Skip to main content
Log in

Glioblastome nutzen neuronale Eigenschaften: Schlüssel zu neuen Therapien?

Glioblastomas exploit neuronal properties: a key to new forms of treatment?

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Neueste Forschungsergebnisse deuten darauf hin, dass Glioblastome verschiedene neuronale Eigenschaften ausbilden und dadurch das Tumorwachstum fördern, das Gehirn kolonisieren und Standardtherapien widerstehen. Dies eröffnet Möglichkeiten für neue therapeutische Strategien und begründet das neue Forschungsfeld „Cancer Neuroscience“ an der Schnittstelle zwischen Onkologie und den Neurowissenschaften. Glioblastome und andere unheilbare Hirntumorentitäten bilden multizelluläre Tumornetzwerke durch lange Zellfortsätze aus, die durch neuronale Entwicklungsmechanismen molekular gesteuert werden. Diese Netzwerke ermöglichen dem Tumor effiziente Kommunikation und Resilienz gegen äußere Störungen und werden tumorintrinsisch durch schrittmacherähnliche Tumorzellen kontinuierlich aktiviert. Zusätzlich existieren Neuron-Tumor-Netzwerke durch direkte glutamaterge synaptische Kontakte zwischen Nervenzellen und Tumorzellen. Diese verschiedenen neuronalen Mechanismen der Glioblastomnetzwerke tragen zur Malignität und Resistenz bei, weshalb Strategien zur Trennung dieser multizellulären Netzwerke entwickelt werden, die aktuell in ersten klinischen Studien hinsichtlich ihrer therapeutischen Eignung untersucht werden.

Abstract

Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bahcheli AT, Min H‑K, Bayati M et al (2023) Pan-cancer analysis of the ion permeome reveals functional regulators of glioblastoma aggression

    Book  Google Scholar 

  2. Barron T, Yalçın B, Mochizuki A et al (2022) GABAergic neuron-to-glioma synapses in diffuse midline gliomas. bioRxiv

    Google Scholar 

  3. Bergles DE, Roberts JD, Somogyi P et al (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Blankenship AG, Feller MB (2010) Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 11:18–29

    Article  CAS  PubMed  Google Scholar 

  5. Chen P, Wang W, Liu R et al (2022) Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature

  6. Damavandi PT, Pasini F, Fanella G et al (2023) Perampanel in brain tumor-related epilepsy: a systematic review. Brain Sci 13:

  7. Hausmann D, Hoffmann DC, Venkataramani V et al (2023) Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature 613:179–186

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Krishna S, Choudhury A, Keough MB et al (2023) Glioblastoma remodelling of human neural circuits decreases survival. Nature 617:

  9. Osswald M, Jung E, Sahm F et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Pan Y, Hysinger JD, Barron T et al (2021) NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature

  11. Ratliff M, Karimian-Jazi K, Hoffmann DC et al (2023) Individual glioblastoma cells harbor both proliferative and invasive capabilities during tumor progression. Neuro-Oncology

  12. Scherm A, Ippen FM, Hau P et al (2023) Targeted therapies in patients with newly diagnosed glioblastoma—a systematic meta-analysis of randomized clinical trials. Intl Journal of Cancer 152:2373–2382

    Article  CAS  Google Scholar 

  13. Schneider M, Vollmer L, Potthoff AL et al (2021) Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro Oncol

  14. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  15. Venkataramani V, Tanev DI, Strahle C et al (2019) Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:532–538

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Venkataramani V, Yang Y, Schubert MC et al (2022) Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 185:2899–2917

    Article  CAS  PubMed  Google Scholar 

  17. Venkatesh HS, Johung TB, Caretti V et al (2015) Neuronal activity promotes glioma growth through neuroligin‑3 secretion. Cell 161:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Venkatesh HS, Morishita W, Geraghty AC et al (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573:539–545

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Venkatesh HS, Tam LT, Woo PJ et al (2017) Targeting neuronal activity-regulated neuroligin‑3 dependency in high-grade glioma. Nature 549:533–537

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  20. Watson DC, Bayik D, Storevik S et al (2023) GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Natl Cancer 4:648

    Article  CAS  Google Scholar 

  21. Weil S, Osswald M, Solecki G et al (2017) Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol 19:1316–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weller M, Wick W, Aldape K et al (2015) Glioma. Nat Rev Dis Primers 1:15017

    Article  PubMed  Google Scholar 

  23. Zeng Q, Michael IP, Zhang P et al (2019) Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573:526–531

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Venkataramani V, Schneider M, Giordano FA et al (2022) Disconnecting multicellular networks in brain tumours. Nat Rev Cancer 22:481–491. https://doi.org/10.1038/s41568-022-00475-0

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Schubert MC, Kuner T et al (2022) Brain tumor networks in diffuse glioma. Neurotherapeutics 19:1832–1843. https://doi.org/10.1007/s13311-022-01320-w

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Winkler.

Ethics declarations

Interessenkonflikt

V. Venkataramani und F. Winkler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkataramani, V., Winkler, F. Glioblastome nutzen neuronale Eigenschaften: Schlüssel zu neuen Therapien?. Nervenarzt 95, 96–103 (2024). https://doi.org/10.1007/s00115-023-01589-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-023-01589-y

Schlüsselwörter

Keywords

Navigation