Skip to main content
Log in

Genomik und Proteomik in der Erforschung neuromuskulärer Erkrankungen

Genomics and proteomics in the research of neuromuscular diseases

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Neurologische Erkrankungen betreffen 3–5 % aller Kinder und nehmen bei Erwachsenen, insbesondere in der alternden Population Westeuropas, neben Herz‑/Kreislauf- und Tumorerkrankungen die häufigste Ursache für Morbidität und Mortalität ein. Neuromuskuläre Krankheitsbilder sind eine Untergruppe der neurologischen Erkrankungen und haben häufig eine genetische Ursache, was zu einer familiären Häufung führt. Trotz des enormen Fortschritts in der Analyse des Erbguts wie beispielsweise durch Sequenzanalysen der kodierenden Desoxyribonukleinsäureregionen oder der gesamten Desoxyribonukleinsäure bleibt die genetische Ursache bei ca. der Hälfte der Patienten, die an seltenen Formen neurologischer Erkrankungen leiden, ungeklärt. Gründe hierfür werden in diesem Artikel aufgeführt. Im Falle des Vorhandenseins von Therapiekonzepten kann dies unter Umständen einen Einfluss auf die frühzeitige und adäquate Behandlung der Patienten haben. Unter Betrachtung der neuromuskulären Erkrankungen als Paradigmen stellt dieser Artikel neben den Vorzügen des Einzugs der „Next-generation-sequencing“-Analyse-basierten DNA-Untersuchungen als eine Omics-Technologie („genomics“) zudem den Vorzug der Integration dieser mit Proteinanalysen („proteomics“) dar. Dabei wird ein besonderes Augenmerk auf die Kombination von Genomik und Proteomik in Sinne eines proteogenomischen Ansatzes bei der Diagnostik und Erforschung der Erkrankungen gelegt. In diesem Sinne wird im Rahmen dieses Artikels ein proteogenomischer Ansatz im Kontext eines multidisziplinären Projektes zur verbesserten Diagnostik und zukünftigen Therapie von Patienten mit neuromuskulären Erkrankungen vorgestellt; NME-GPS: Gen- und Protein-Signaturen als globales Positionsbestimmungssystem bei Patienten mit neuromuskulären Erkrankungen.

Abstract

Neurological diseases affect 3–5% of children and, apart from cardiovascular diseases and cancer, represent the most prominent cause of morbidity and mortality in adults and particularly in the aged population of western Europe. Neuromuscular disorders are a subgroup of neurological diseases and often have a genetic origin, which leads to familial clustering. Despite the enormous progress in the analysis of the genome, such as by sequence analysis of coding regions of deoxyribonucleic acid or even the entire deoxyribonucleic acid sequence, in approximately 50% of the patients suffering from rare forms of neurological diseases the genetic cause remains unsolved. The reasons for this limited detection rate are presented in this article. If a treatment concept is available, under certain conditions this can have an impact on the adequate and early treatment of these patients. Considering neuromuscular disorders as a paradigm, this article reports on the advantages of the inclusion of next generation sequencing analysis-based DNA investigations as an omics technology (genomics) and the advantage of the integration with protein analyses (proteomics). A special focus is on the combination of genomics and proteomics in the sense of a proteogenomic approach in the diagnostics and research of these diseases. Along this line, this article presents a proteogenomic approach in the context of a multidisciplinary project aiming towards improved diagnostic work-up and future treatment of patients with neuromuscular diseases; “NMD-GPS: gene and protein signatures as a global positioning system in patients suffering from neuromuscular diseases”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ankala A, da Silva C, Gualandi F, Ferlini A, Bean LJH, Collins C, Tanner AK, Hegde MR (2015) A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield. Ann Neurol 77:206–214

    Article  Google Scholar 

  2. Astrea G, Romano A, Angelini C, Antozzi CG, Barresi R, Battini R, Battisti C, Bertini E, Bruno C, Cassandrini D, Fanin M, Fattori F, Fiorillo C, Guerrini R, Maggi L, Mercuri E, Morani F, Mora M, Moro F, Pezzini I, Picillo E, Pinelli M, Politano L, Rubegni A, Sanseverino W, Savarese M, Striano P, Torella A, Trevisan CP, Trovato R, Zaraieva I, Muntoni F, Nigro V, D’Amico A, Santorelli FM (2018) Broad phenotypic spectrum and genotype-phenotype correlations in GMPPB-related dystroglycanopathies: an Italian cross-sectional study. Orphanet J Rare Dis 13:170

    Article  Google Scholar 

  3. Bansagi B, Griffin H, Whittaker RG, Antoniadi T, Evangelista T, Miller J, Greenslade M, Forester N, Duff J, Bradshaw A, Kleinle S, Boczonadi V, Steele H, Ramesh V, Franko E, Pyle A, Lochmüller H, Chinnery PF, Horvath R (2017) Genetic heterogeneity of motor neuropathies. Neurology 88:1226–1234

    Article  CAS  Google Scholar 

  4. Benarroch L, Bonne G, Rivier F, Hamroun D (2020) The 2021 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord 30:1008–1048

    Article  Google Scholar 

  5. Carr SJ, Zahedi RP, Lochmüller H, Roos A (2018) Mass spectrometry-based protein analysis to unravel the tissue pathophysiology in Duchenne muscular dystrophy. Proteomics Clin Appl. https://doi.org/10.1002/prca.201700071

    Article  PubMed  Google Scholar 

  6. Choi B‑O, Koo SK, Park M‑H, Rhee H, Yang S‑J, Choi K‑G, Jung S‑C, Kim HS, Hyun YS, Nakhro K, Lee HJ, Woo H‑M, Chung KW (2012) Exome sequencing is an efficient tool for genetic screening of Charcot-Marie-tooth disease. Hum Mutat 33:1610–1615

    Article  CAS  Google Scholar 

  7. Depienne C, Mandel J‑L (2021) 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet 108:764–785

    Article  CAS  Google Scholar 

  8. Engel AG (2018) Genetic basis and phenotypic features of congenital myasthenic syndromes. Handb Clin Neurol 148:565–589

    Article  Google Scholar 

  9. Gazzerro E, Bonetto A, Minetti C (2011) Caveolinopathies: translational implications of caveolin‑3 in skeletal and cardiac muscle disorders. Handb Clin Neurol 101:135–142

    Article  CAS  Google Scholar 

  10. Ghaoui R, Cooper ST, Lek M, Jones K, Corbett A, Reddel SW, Needham M, Liang C, Waddell LB, Nicholson G, O’Grady G, Kaur S, Ong R, Davis M, Sue CM, Laing NG, North KN, MacArthur DG, Clarke NF (2015) Use of whole-exome sequencing for diagnosis of limb-girdle muscular dystrophy: outcomes and lessons learned. JAMA Neurol 72:1424–1432

    Article  Google Scholar 

  11. Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L, Ozes B, Karaca E, Jhangiani SN, Bainbridge MN, Lawson KS, Pehlivan D, Okamoto Y, Withers M, Mancias P, Slavotinek A, Reitnauer PJ, Goksungur MT, Shy M, Crawford TO, Koenig M, Willer J, Flores BN, Pediaditrakis I, Us O, Wiszniewski W, Parman Y, Antonellis A, Muzny DM, Katsanis N, Battaloglu E, Boerwinkle E, Gibbs RA, Lupski JR (2015) Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 12:1169–1183

    Article  CAS  Google Scholar 

  12. Güttsches A‑K, Brady S, Krause K, Maerkens A, Uszkoreit J, Eisenacher M, Schreiner A, Galozzi S, Mertens-Rill J, Tegenthoff M, Holton JL, Harms MB, Lloyd TE, Vorgerd M, Weihl CC, Marcus K, Kley RA (2017) Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol 81:227–239

    Article  Google Scholar 

  13. Harris E, Topf A, Barresi R, Hudson J, Powell H, Tellez J, Hicks D, Porter A, Bertoli M, Evangelista T, Marini-Betollo C, Magnússon Ó, Lek M, MacArthur D, Bushby K, Lochmüller H, Straub V (2017) Exome sequences versus sequential gene testing in the UK highly specialised service for limb girdle muscular dystrophy. Orphanet J Rare Dis 12:151

    Article  Google Scholar 

  14. Hathazi D, Cox D, D’Amico A, Tasca G, Charlton R, Carlier R‑Y, Baumann J, Kollipara L, Zahedi RP, Feldmann I, Deleuze J‑F, Torella A, Cohn R, Robinson E, Ricci F, Jungbluth H, Fattori F, Boland A, O’Connor E, Horvath R, Barresi R, Lochmüller H, Urtizberea A, Jacquemont M‑L, Nelson I, Swan L, Bonne G, Roos A (2021) INPP5K and SIL1 associated pathologies with overlapping clinical phenotypes converge through dysregulation of PHGDH. Brain 144(8):2427–2442. https://doi.org/10.1093/brain/awab133

    Article  PubMed  Google Scholar 

  15. Hathout Y, Brody E, Clemens PR, Cripe L, DeLisle RK, Furlong P, Gordish-Dressman H, Hache L, Henricson E, Hoffman EP, Kobayashi YM, Lorts A, Mah JK, McDonald C, Mehler B, Nelson S, Nikrad M, Singer B, Steele F, Sterling D, Sweeney HL, Williams S, Gold L (2015) Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 112:7153–7158

    Article  CAS  Google Scholar 

  16. Hentschel A, Czech A, Münchberg U, Freier E, Schara-Schmidt U, Sickmann A, Reimann J, Roos A (2021) Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases. Orphanet J Rare Dis 16:73

    Article  Google Scholar 

  17. Kley RA, Leber Y, Schrank B, Zhuge H, Orfanos Z, Kostan J, Onipe A, Sellung D, Güttsches AK, Eggers B, Jacobsen F, Kress W, Marcus K, Djinovic-Carugo K, van der Ven PFM, Fürst DO, Vorgerd M (2021) FLNC-associated myofibrillar myopathy: new clinical, functional, and proteomic data. Neurol Genet 7(3):e590

    Article  Google Scholar 

  18. Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y (2016) A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet 12:e1005679

    Article  Google Scholar 

  19. Kölbel H, Hathazi D, Jennings M, Horvath R, Roos A, Schara U (2019) Identification of candidate protein markers in skeletal muscle of laminin-211-deficient CMD type 1A-patients. Front Neurol 10:470

    Article  Google Scholar 

  20. Kölbel H, Roos A, van der Ven PFM, Evangelista T, Nolte K, Johnson K, Töpf A, Wilson M, Kress W, Sickmann A, Straub V, Kollipara L, Weis J, Fürst DO, Schara U (2020) FLNC-associated myofibrillar myopathy: new clinical, functional, and proteomic data. Hum Mutat 41:1600–1614

    Article  Google Scholar 

  21. Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M, Vihola A, Evilä A, Suominen T, Penttilä S, Savarese M, Johari M, Minot M‑C, Hilton-Jones D, Maddison P, Chinnery P, Reimann J, Kornblum C, Kraya T, Zierz S, Sue C, Goebel H, Azfer A, Ralston SH, Hackman P, Bucelli RC, Taylor JP, Weihl CC, Udd B (2018) TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J Clin Invest 128:1164–1177

    Article  Google Scholar 

  22. Lek M, MacArthur D (2014) The challenge of next generation sequencing in the context of neuromuscular diseases. J Neuromuscul Dis 1:135–149

    Article  Google Scholar 

  23. Luo S, Cai S, Maxwell S, Yue D, Zhu W, Qiao K, Zhu Z, Zhou L, Xi J, Lu J, Beeson D, Zhao C (2017) Novel mutations in the C‑terminal region of GMPPB causing limb-girdle muscular dystrophy overlapping with congenital myasthenic syndrome. Neuromuscul Disord 27:557–564

    Article  Google Scholar 

  24. Marques Matos C, Alonso I, Leão M (2019) Diagnostic yield of next-generation sequencing applied to neurological disorders. J Clin Neurosci 67:14–18

    Article  Google Scholar 

  25. Montes-Chinea NI, Guan Z, Coutts M, Vidal C, Courel S, Rebelo AP, Abreu L, Zuchner S, Littleton JT, Saporta MA (2018) Identification of a new SYT2 variant validates an unusual distal motor neuropathy phenotype. Neurol Genet 4:e282

    Article  CAS  Google Scholar 

  26. Punetha J, Kesari A, Uapinyoying P, Giri M, Clarke NF, Waddell LB, North KN, Ghaoui R, O’Grady GL, Oates EC, Sandaradura SA, Bönnemann CG, Donkervoort S, Plotz PH, Smith EC, Tesi-Rocha C, Bertorini TE, Tarnopolsky MA, Reitter B, Hausmanowa-Petrusewicz I, Hoffman EP (2016) Targeted re-sequencing emulsion PCR panel for myopathies: results in 94 cases. JND 3:209–225

    Article  Google Scholar 

  27. Reddy HM, Cho K‑A, Lek M, Estrella E, Valkanas E, Jones MD, Mitsuhashi S, Darras BT, Amato AA, Lidov HG, Brownstein CA, Margulies DM, Yu TW, Salih MA, Kunkel LM, MacArthur DG, Kang PB (2017) The sensitivity of exome sequencing in identifying pathogenic mutations for LGMD in the United States. J Hum Genet 62:243–252

    Article  CAS  Google Scholar 

  28. Roos A, Thompson R, Horvath R, Lochmüller H, Sickmann A (2018) Intersection of proteomics and genomics to „solve the unsolved“ in rare disorders such as neurodegenerative and neuromuscular diseases. Proteomics Clin Appl. https://doi.org/10.1002/prca.201700073

    Article  PubMed  Google Scholar 

  29. Schessl J, Zou Y, McGrath MJ, Cowling BS, Maiti B, Chin SS, Sewry C, Battini R, Hu Y, Cottle DL, Rosenblatt M, Spruce L, Ganguly A, Kirschner J, Judkins AR, Golden JA, Goebel H‑H, Muntoni F, Flanigan KM, Mitchell CA, Bönnemann CG (2008) Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest 118:904–912

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AAM, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77

    Article  Google Scholar 

  31. Theunissen TEJ, Nguyen M, Kamps R, Hendrickx AT, Sallevelt SCEH, Gottschalk RWH, Calis CM, Stassen APM, de Koning B, Mulder-Den Hartog ENM, Schoonderwoerd K, Fuchs SA, Hilhorst-Hofstee Y, de Visser M, Vanoevelen J, Szklarczyk R, Gerards M, de Coo IFM, Hellebrekers DMEI, Smeets HJM (2018) Whole exome sequencing is the preferred strategy to identify the genetic defect in patients with a probable or possible mitochondrial cause. Front Genet 9:400

    Article  CAS  Google Scholar 

  32. Thompson R, Spendiff S, Roos A, Bourque PR, Warman Chardon J, Kirschner J, Horvath R, Lochmüller H (2020) Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 19:522–532

    Article  CAS  Google Scholar 

  33. Töpf A, Johnson K, Bates A, Phillips L, Chao KR, England EM, Laricchia KM, Mullen T, Valkanas E, Xu L, Bertoli M, Blain A, Casasús AB, Duff J, Mroczek M, Specht S, Lek M, Ensini M, MacArthur DG, Straub V (2020) Sequential targeted exome sequencing of 1001 patients affected by unexplained limb-girdle weakness. Genet Med 22:1478–1488

    Article  Google Scholar 

  34. Töpf A, Pyle A, Griffin H, Matalonga L, Schon K, Sickmann A, Schara-Schmidt U, Hentschel A, Chinnery PF, Kölbel H, Roos A, Horvath R (2021) Exome reanalysis and proteomic profiling identified TRIP4 as a novel cause of cerebellar hypoplasia and spinal muscular atrophy (PCH1). Eur J Hum Genet. https://doi.org/10.1038/s41431-021-00851-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vaidyanathan R, Reilly L, Eckhardt LL (2018) Caveolin‑3 microdomain: arrhythmia implications for potassium inward rectifier and cardiac sodium channel. Front Physiol 9:1548

    Article  Google Scholar 

  36. Vill K, Blaschek A, Gläser D, Kuhn M, Haack T, Alhaddad B, Wagner M, Kovacs-Nagy R, Tacke M, Gerstl L, Schroeder AS, Borggraefe I, Mueller C, Schlotter-Weigel B, Schoser B, Walter MC, Müller-Felber W (2017) Early-onset myopathies: clinical findings, prevalence of subgroups and diagnostic approach in a single neuromuscular referral center in Germany. JND 4:315–325

    Article  CAS  Google Scholar 

  37. Wolff L, Strathmann EA, Müller I, Mählich D, Veltman C, Niehoff A, Wirth B (2021) Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 78:5275–5301

    Article  CAS  Google Scholar 

  38. Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19:253–268

    Article  CAS  Google Scholar 

  39. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, Ward P, Braxton A, Wang M, Buhay C, Veeraraghavan N, Hawes A, Chiang T, Leduc M, Beuten J, Zhang J, He W, Scull J, Willis A, Landsverk M, Craigen WJ, Bekheirnia MR, Stray-Pedersen A, Liu P, Wen S, Alcaraz W, Cui H, Walkiewicz M, Reid J, Bainbridge M, Patel A, Boerwinkle E, Beaudet AL, Lupski JR, Plon SE, Gibbs RA, Eng CM (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312:1870–1879

    Article  CAS  Google Scholar 

  40. Yiş U, Becker K, Kurul SH, Uyanik G, Bayram E, Haliloğlu G, Polat Aİ, Ayanoğlu M, Okur D, Tosun AF, Serdaroğlu G, Yilmaz S, Topaloğlu H, Anlar B, Cirak S, Engel AG (2017) Genetic landscape of congenital myasthenic syndromes from Turkey: novel mutations and clinical insights. J Child Neurol 32:759–765

    Article  Google Scholar 

Download references

Funding

ERDF (European Regional Development Fund (ERDF)) PD Dr. rer. nat. Andreas Roos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Roos.

Ethics declarations

Interessenkonflikt

A. Gangfuß, U. Schara-Schmidt und A. Roos geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangfuß, A., Schara-Schmidt, U. & Roos, A. Genomik und Proteomik in der Erforschung neuromuskulärer Erkrankungen. Nervenarzt 93, 114–121 (2022). https://doi.org/10.1007/s00115-021-01201-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-021-01201-1

Schlüsselwörter

Keywords

Navigation