Hintergrund

Künstliche Intelligenz (KI) verfolgt das Ziel, eine Methode zu entwickeln, um komplexe Sachverhalte auf Basis großer Datenmengen zu erfassen und zu lösen. Möglicherweise werden Computer dadurch das Denken der Menschen erweitern.

Als Grundlage für selbstlernende KI bedarf es neben den Methoden des maschinellen Lernens („supervised machine learning“, „unsupervised machine learning“ und „reinforcement learning“, Abb. 1; Tab. 1) folgender Punkte:

  • die Verfügbarkeit großer digital gespeicherter Datenmengen [51] sowie

  • die Entwicklung einer Hardware zur Parallelisierung von Rechenprozessen [13].

Abb. 1
figure 1

Maschinelles Lernen und Beispiele für den klinischen Einsatz: a supervidiertes maschinelles Lernen, b nichtsupervidiertes maschinelles Lernen, c bestärkendes Lernen

Tab. 1 Maschinelles Lernen und Beispiele für den klinischen Einsatz

Das supervidierte maschinelle Lernen (Abb. 1a) beschreibt den Einsatz neuronaler Netze oder anderer Algorithmen zum Lernen von Zielwerten („targets“). Diese populären Methoden werden genutzt, um medizinische Bilder (radiologisch [28], histopathologisch [20] oder sonographisch [29]) zu analysieren und mit einer Annotation (z. B. Befunde der Bilder) zu trainieren. Klinische Einsätze sind hier z. B. das direkte Erkennen von Blutungen auf einer computertomographischen Abbildung des Kopfes [3] oder bildmorphologischer Faktoren im Sinne einer Expansion einer zerebralen Blutung [36] und die Einordnung histopathologischer (Schnellschnitt‑)Präparate z. B. bei der Klassifikation von Hirntumoren während einer neurochirurgischen Operation zur weiteren Entscheidungsfindung der Operateure und damit zu einer intraoperativen Konsequenz in Echtzeit [20]. Weiter zeigt sich ein Vorteil bei der automatisierten Analyse echokardiographischer Aufnahmen zur Detektion pathologischer Befunde [29].

Das unsupervidierte maschinelle Lernen (Abb. 1b) dient dazu, große multidimensionale Datensätze lesbar zu machen. Diese Methoden nehmen die Daten, vergleichen die Abstände der Datenpunkte zueinander in einem mathematischen multidimensionalen Raum und erstellen auf Basis der Abstände eine zweidimensionale neue Abbildung. Diese Methodik findet bereits eine breite Anwendung im Bereich der Grundlagenforschung, z. B. beim Vergleich genetischer Befunde gesunder und kranker Populationen. Hierbei werden hochdimensionale Gensequenzanalysen und deren Expressionsprofile genutzt, um sich ähnelnde Cluster innerhalb der Population zu finden [55]. Ebenfalls dient sie dazu, Muster aus hochfrequenten Zeitseriendaten zu analysieren und diese dann als erneuten Input für weiteres supervidiertes Lernen oder bestärkendes Lernen zu nutzen [2, 26].

Durch effektive KI-Assistenzsysteme könnten Kliniker entlastet werden

Eine weitere Methode des maschinellen Lernens ist das bestärkende Lernen („reinforcement learning“, Abb. 1c). Hierbei handelt es sich um einen selbstlernenden Algorithmus (Agent), dem im Vergleich zu den oben genannten Methoden zunächst kein Datensatz als Grundlage dient. In einem simulativen Setting testet der Agent seine Entscheidung in Bezug auf die Umgebung („environment“). Das Ergebnis („target“/Outcome) wird durch Strategieanpassung optimiert. Diese Algorithmen sind z. B. in der Lage, bekannte Onlinespiele zu trainieren und komplexe Spielzüge so zu optimieren, dass sie annähernd unschlagbar werden [52].

Bestärkendes Lernen ist eine Methode, die noch wenig auf therapeutische Maßnahmen der Medizin angewendet wird. Ein vielversprechender Ansatz zeigte durch das „reinforcement learning“ eine potenzielle Verbesserung der Sepsistherapie, durch die Optimierung der individuellen Volumen- und Katecholamintherapie [26].

Das Potenzial dieser Technologie kann jedoch erst dann wirklich genutzt werden, wenn mehr klinische Daten zentral gespeichert werden und auch mitunter live zur Verfügung stehen. Die Interoperabilität der Daten ist dafür entscheidend, also die Möglichkeit, Daten aus verschiedenen klinischen Informationssystemen kompatibel zu machen, um sie zentral in anonymisierter Form abzuspeichern und für KI-basierte Analysen zur Verfügung zu stellen.

Die damit zwingend verbundene Diskussion über ethische und datenschutzrechtliche Grenzen muss geführt werden. Dem hohen Gut, dass durch diese Technologie Behandlungen verbessert werden können, stehen derzeit zum einen technologische Limitationen gegenüber (v. a. der geringe Digitalisierungsgrad deutscher Krankenhäuser), zum anderen rechtliche Einschränkungen, so z. B. die Frage, ab wann Daten wirklich als vollständig anonymisiert („double de-identified“) gelten und damit auch mit einiger krimineller Energie nicht auf individuelle Patienten zurückbezogen werden können. Weiter ergibt sich dadurch auch ein Automatisierungsprozess mit nicht zu unterschätzenden strukturellen Veränderungen und Veränderungen der Arbeitsweise im Krankenhaus.

Hervorzuheben ist, dass es nach unserem jetzigen Verständnis in der Medizin, im Gegensatz zum autonomen Autofahren, nicht um eine autonome Behandlung geht. Vielmehr handelt es sich um eine KI-assistierte Optimierung der Therapie, mit dem Ziel der Fehlerreduktion durch individuell ausgewertete und aufbereitete Daten [51]. Durch effektive KI-Assistenzsysteme könnten Kliniker zeitlich entlastet werden, um dadurch mehr Zeit für die direkte Betreuung der Patienten zu gewinnen. Prospektive Studien, die zeigen, dass eine klinische Assistenz mittels KI einen Vorteil für den Patienten oder das behandelnde Team bringen, sind aktuell noch kaum vorhanden und sollten frühzeitig in den Mittelpunkt der klinischen KI-Forschung gestellt werden.

KI für den neurologisch schwerkranken Patienten – Beispiel Schlaganfall

Die Integration von KI in das klinisch-ambulante oder prästationäre Setting kann den Behandlungsansatz von Patienten beeinflussen. Insbesondere Menschen mit einem Risikoprofil oder chronisch kranke Patienten werden in der Lage sein, mittels Smart-Devices ihren Gesundheitszustand im Alltag besser beurteilen zu können. Anhand einer frühzeitigen Detektion von Risikoparametern kann auf potenzielle Notfälle besser reagiert werden (Abb. 2).

Abb. 2
figure 2

AI(„artificial intelligence“)-assistierter Verlauf eines neurologisch kritisch kranken Patienten (Skizze). (Bildmaterial mit freundlicher Genehmigung von Freepik/designed by macrovector, www.freepik.com)

Meist besteht bei Schlaganfallpatienten ein erhöhtes vaskuläres Risikoprofil. Eine automatisierte Erkennung von z. B. Vorhofflimmern mittels Smartwatch kann Patienten mit einem erhöhten Risiko für zerebrovaskuläre Erkrankungen frühzeitig identifizieren [37]. Auch über die Analyse der Retina [39] noch asymptomatischer Patienten kann eine Vorhersage für das Risiko eines akut zerebralen Ereignisses getroffen werden. Eine App ermöglicht es dem Patienten, sein persönliches Schlaganfallrisiko zu ermitteln [27]. Diese bietet basierend auf den Ergebnissen prophylaktische Ansätze, um die Inzidenz von Schlaganfällen zu verringern. Ein weiterer Ansatz wäre auch, milde Schlaganfallsymptome wie eine verwaschene Sprache [14] oder auch eine faziale Asymmetrie KI-assistiert zu detektieren [16].

Insbesondere in ihrer Mobilität eingeschränkte Patienten können von der automatisierten Detektion von Stürzen profitieren [7, 30] oder auch von der automatisierten Detektion von Unfällen in einer städtischen Umgebung mittels Smartphone [5].

Ein weiteres Anwendungsbeispiel: Ein Patient, der in die Notaufnahme einer Klinik kommt, wird durch eine automatisierte Triage, welche zuvor Muster von über 230.000 Patienten mit entsprechenden Symptomen einer Verdachtsdiagnose gelernt hat, beurteilt. Auf Grundlage dessen soll die Schwere der akuten Erkrankung [22] und auch eine nötige stationäre Aufnahme vorhergesagt werden [21]. In unserem Beispiel des Schlaganfallpatienten kann die KI-basierte Empfehlung zur schnellen Bildgebung und auch die Ermittlung von Parametern für eine weiterführende Versorgung therapiebeeinflussend sein. Hier reicht das Spektrum von der automatisierten Detektion intrakranieller Blutungen [4, 49], der Berechnung des Alberta Stroke Programme Early CT Scores (ASPECTS; [33]) bis hin zur direkten Detektion von Schlaganfällen [12]. Eine Verlegung von intubierten oder postinterventionellen Patienten auf die neurologische Intensivstation bietet weitere Möglichkeiten des Einsatzes maschinellen Lernens.

KI in der Intensivmedizin

Die Herausforderung bei schwerkranken Patienten auf Intensivstationen liegt vor allem in der Dynamik des Krankheitsverlaufes. Patienten, die auf einer Intensivstation behandelt werden, versterben mit einer höheren Wahrscheinlichkeit als in anderen Bereichen der Medizin. Um minimale Veränderungen zu detektieren, ist aktuell ein umfangreiches Monitoring notwendig. Erst bei Über- oder Unterschreiten definierter Alarmgrenzen wird über die Verschlechterung des Zustandes des Patienten informiert. Häufige und unspezifische Alarme führen beim Personal zu einer Fatigue und reduzieren die Bereitschaft dem Alarm nachzugehen. Die Anwendung von KI könnte mehrere Stunden im Voraus eine Zustandsänderung ermitteln und eine Prognose über den Verlauf erstellen. Dieser Ansatz wäre somit spezifischer als die der Beurteilung der direkten Alarme [24], weil durch die KI Erfahrungswissen unermüdlich mit ins Kalkül gezogen wird.

Der Einsatz von KI auf der Intensivstation ist der erste Bereich in der Medizin, bei dem anhand vieler vorhandener Daten Modelle trainiert werden können, um einen möglichen Einsatz in einer Echtzeitumgebung zu erproben. Hierzu wurden in den letzten Jahren der Forschung zunehmend mehr Daten anonymisiert zur Verfügung gestellt („open source“). Es sind insbesondere drei große Datenbanken mit unterschiedlich vielen retrospektiv erfassten Patienten zu nennen.

MIMIC ist eine der wichtigsten Referenzdatenbanken zur Entwicklung von KI in der Intensivmedizin

Die mittlerweile in der 4. Version vorliegende MIMIC(„Medical Information Mart for Intensive Care“)-Datenbank [25, 44] wird durch das Massachusetts Institute of Technology auf PhysioNet.org zur Verfügung gestellt [15]. Sie enthält monozentrische Daten von 53.423 Patienten, die im Beth Israel Deaconess Medical Center in Boston behandelt wurden. Diese Datenbank ist eine der wichtigsten öffentlich zur Verfügung stehenden Quellen für das maschinelle Lernen. In der aktuellen Version und Erweiterung mit wellenförmigen Daten und Thoraxröntgenbildern ist sie eine der wichtigsten Referenzdatenbanken zur Entwicklung von KI in der Intensivmedizin.

Ebenfalls aus den USA existiert die umfangreichere eICU(Electronic Intensive Care Unit Collaborative Research)-Datenbank von über 335 Intensivstationen mit insgesamt 139.000 Patienten [38]. Und zuletzt wurde die HiRID(„high time-resolution ICU dataset“)-Datenbank aus der Schweiz publiziert ([24]; n = 55.602, ca. 10.000 neurologische Patienten).

Diese Datenbanken dienen als Grundlage für die Entwicklung verschiedenster Modelle zum Trainieren von Prädiktionsmodellen für den klinischen Einsatz.

Die MIMIC- und die eICU-Datenbank wurden z. B. genutzt, um einen künstlichen Behandler für die Sepsistherapie zu trainieren. Für das Training kamen zunächst die hochaufgelösten MIMIC-Daten zum Einsatz, um dann als Testdatensatz die eICU-Datenbank zu nutzen [26]. Der künstliche Arzt hatte für eine unbekannte Kohorte Prädiktionen für die Therapie der Sepsis geliefert. Es zeigte sich, dass Patienten, deren behandelnde Ärzte sich retrospektiv am nähesten an die Therapieempfehlungen des künstlichen Arztes gehalten hatten, mit der höchsten Wahrscheinlichkeit überlebt haben. Die neue Behandlungsstrategie des künstlichen Arztes, im Vergleich zu den Klinikern, unterschied sich in einer früheren und erhöhten Gabe von Vasopressoren und insgesamt geringeren Volumendosis. Der Vorteil ist jedoch darüber hinaus eine individuell angepasste Behandlungsstrategie.

Neben der Sepsis ist das akute Nieren- und Kreislaufversagen ein großer Risikofaktor für einen komplizierten Verlauf des Patienten auf der Intensivstation. Auch hier wurde anhand der MIMIC-Datenbank mittels KI ein Modell entwickelt, um ein Nierenversagen früh und sicher vorherzusagen [54, 56]. An den Daten aus Zürich (HiRID ) wurde ein Modell trainiert, welches im Vergleich zu den Alarmgrenzen eine zuverlässigere Vorhersage von Kreislaufversagen generiert. Nebenbei bemerkt, hatte das Modell für die Vorhersage von Kreislaufversagen die größten Schwierigkeiten mit neurologischen Patienten [24].

KI in der neurologischen Intensivmedizin

Patienten, die auf der Neurointensivstation behandelt werden, leiden meist an akuten Erkrankungen. Hierzu zählen am häufigsten traumatische Hirnverletzungen, Blutungen (intrazerebrale, subdurale und Subarachnoidalblutung), maligne Schlaganfälle, epileptische Serien oder der Status epilepticus sowie ausgeprägte periphere Nervenschädigungen, wie Querschnittssyndrome oder das Guillain-Barré-Syndrom (Abb. 3). Diese Patienten erhalten ein kontinuierliches Monitoring unterschiedlichster Parameter, diverse Medikamente und werden bei Bedarf interventionell behandelt (insbesondere neuroradiologisch und neurochirurgisch). Die Menge an heterogenen Daten und Informationen können als Input zum Trainieren von Prädiktionsmodellen genutzt werden. Potenzielle „targets“ können unabhängig vom Input definiert werden und sollten entscheidend für den Behandlungserfolg auf der neurologischen Intensivstation sein (Abb. 4).

Abb. 3
figure 3

Übersicht neurologische Intensivmedizin. EVD externe Ventrikeldrainage, ICP „intracranial pressure“. (Bildmaterial mit freundlicher Genehmigung von Freepik/designed by macrovector, www.freepik.com)

Abb. 4
figure 4

Möglicher Einsatz von „artificial intelligence“ (AI) in der Neurointensivmedizin (Beispiel). CT Computertomographie, CTA CT-Angiographie, EEG Elektroenzephalographie, EKG Elektrokardiographie, MEP motorisch evozierte Potenziale, MRT Magnetresonanztomographie, SEP somatosensibel evozierten Potenziale

Bewusstsein und Koma

Koma und irreversible Hirnschäden stellen die Behandelnden ständig vor neue Herausforderungen. Es ist wichtig, Patienten zu erfassen, bei denen trotz fehlender klinischer Hinweise Zeichen für bewusste Wahrnehmung vorhanden sind. Die Methoden der KI können hier in Korrelation mit elektroenzephalographischen (EEG-)Aufzeichnungen helfen. Zur Planung einer prospektiven Studie mit bewusstlosen Patienten wurde ein Model zur maschinellen Mustererkennung („support vector machine“ [SVM]) an gesunden Probanden trainiert, um anhand von EEG-Daten bestimmte Kommandos zu erlernen. In der prospektiven Studie mit über 100 Patienten gab es 15 % Patienten, bei denen keine motorische Antwort auf Kommandos ersichtlich war. Das SVM-Modell konnte jedoch anhand von EEG-Mustern eine Antwort detektieren. Auch wenn es einen Hinweis dafür gab, dass diese Patienten einen besseren Glascow Outcome Scale Extended (GOS-E) nach 12 Monaten hatten, bedarf es sicherlich einer erweiterten Studie, um diese kognitiv-motorische Dissoziation zu beurteilen [10].

Ebenfalls konnte mittels kontinuierlichem EEG bei 195 Patienten in einer Kombination aus einem „convolutional neuronal network“ (CNN) und einem rekurrenten neuronalen Netzwerk (RNN) eine ähnliche Genauigkeit wie mit der Richmond Agitation-Sedation Scale (RASS) und der Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) zur Beurteilung des Bewusstseins vorhergesagt werden. Dies entsprach der Einschätzung des klinischen Personals mit einer Übereinstimmung (gemessen als „area under the curve“ [AUC]) von 0.83 für RASS und 0.80 für CAM-ICU. Hier zeigte die Kombination aus CNN und RNN ein besseres Resultat als eines der Modelle alleine [48]. Die AUC wird hier von einer sog. ROC-Kurve („receiver operating characteristics“) berechnet. Dies ist eine übliche Darstellung der Sensitivität auf der y‑Achse und der 1‑Spezifität auf der x‑Achse (Tab. 2 – Training). Je höher die AUC-ROC ist, desto geringer sind die Klassifikationsfehler (falsch-negativ und falsch-positiv).

Sedierungstiefe

Um die Tiefe einer Narkose zu bestimmen, stehen aktuell verschiedene kommerzielle Lösungen zur Verfügung. Diese haben jedoch Einschränkungen beim klinischen Einsatz. Sie sind nur für Patienten in einem bestimmten Altersspektrum und für spezifische Narkosen zugelassen. Daher werden neue Prozessoren vorgeschlagen, die mit Hilfe von sechs Kurvencharakteristika aus einem kontinuierlichen Single-channel-EEG Vorhersagen zur Sedierungstiefe treffen können. Hier wurden verschiedene Feature-Kombinationen verglichen und ein Decision-tree-Modell benutzt, um eine Klassifikation von vier verschiedenen Stufen der Sedierungstiefe durchzuführen. Dies wurde an 75 Patienten mit einer Genauigkeit von 92,8 % prospektiv evaluiert. Diese Ergebnisse wurden zusammen mit einer On-Chip-Architektur (CMOS) vorgeschlagen, welche als tragbarer Sensor eingesetzt werden kann [43].

Vasospasmen und verzögerte Schlaganfälle

Patienten mit einer subarachnoidalen Blutung (SAB) können verzögerte Schlaganfälle entwickeln, welche sich maßgeblich auf das Outcome auswirken [11, 31, 45]. Das Auftreten von Schlaganfällen kann mit der Entwicklung von Vasospasmen zusammenhängen. Neben der endovaskulären und chirurgischen Akutintervention ist die vorherige Bildgebung entscheidend. Native Computertomographien (CT) des Kopfes können durch schnelle Auswertung mit „deep learning“ zur Erkennung von Blutungen und Frakturen dienen. Dies wurde anhand der Analyse von 313.318 nativen Kopf-CTs gezeigt. SABs konnten neben anderen Pathologien mit einer AUC-ROC von 0,90 klassifiziert werden [9].

Auf der Intensivstation werden neben neurologischen Untersuchungen, invasivem Monitoring und auch regelmäßig transkranielle Dopplersonographien (TCD) durchgeführt. Maschinelles Lernen wurde hier benutzt, um mit diesen Parametern das Outcome (GOS-E) und die modifizierte Rankin-Skala (mRS) 6 Monate nach einer SAB vorherzusagen. Es konnte mittels „decision tree“ und logistischer Regression eine AUC-ROC von 0,86 (2 Kohorten: n = 411 und n = 193; [50]) und mittels „random forrest“ eine „accuracy“ von 84,4 % erreicht werden [42].

Eine weitere Studie mit 333 Patienten zeigte mittels „random forrest“ eine AUC-ROC von 0,91. Verschiedene Laborparameter und auch bildmorphologische Blutungsattribute konnten hier einen Einfluss auf die Verbesserung der Klassifizierung zeigen [53]. Weitere Bildgebungsmodalitäten wie die Perfusions-CT, die Magnetresonanztomographie (MRT) oder die digitale Subtraktionsangiographie (DSA) werden zur Verlaufskontrolle bei SAB-Patienten angewendet. Die 3‑D-Rekonstruktion der Gefäße aus dem Datensatz der DSA von 25 SAB-Patienten am 1. und 7. Tag wurden verwendet, um das Modell basierend auf dem k‑mean-Clustering zu trainieren. Dieses konnte mit einer AUC-ROC von 0,93 Vasospasmen vorhersagen [6].

Darüber hinaus wurde maschinelles Lernen angewandt, um den Einfluss meteorologischer Faktoren auf die Auftretenswahrscheinlichkeit einer SAB zu modellieren [47]. Ein signifikantes Ergebnis konnte die Studie nicht zeigen.

Intrakranieller Druck

Blutungen, Traumata und Schlaganfälle können eine Erhöhung des intrakraniellen Druckes verursachen und ein invasives Hirndruckmonitoring mittels Drucksonde (ICP-Sonde) oder externer Ventrikeldrainage (EVD) notwendig machen. Ebenfalls können entlastende operative Maßnahmen entscheidend für das neurologische Outcome sein. Langanhaltende hypertone Krisen sollten vermieden werden.

Im Allgemeinen wird angenommen, dass durch eine tiefe Sedierung der zerebrale Stoffwechsel heruntergefahren werden kann. Infusionen einer kolloidalen oder hypertonen Kochsalzlösung können kurzfristig dem Gewebe Wasser entziehen, um ebenfalls dem Hirndruck entgegenzuwirken. Die Studienlage zur Sedierung und auch zu onkotisch wirksamen Therapien ist gering und zeigt mitunter keine Verbesserung des Outcomes [1]. Entsprechend der Genese verhält sich die Dynamik des Hirndruckes: Patienten mit intrazerebralen Blutungen entwickeln verzögert ein Ödem, welches sich über 3 Wochen manifestieren kann [1]. Schlaganfall- oder Traumapatienten zeigen eine Ödembildung innerhalb einer Woche mit einer fulminanteren Dynamik; Patienten, die Mischbilder aufweisen, können in Studien mitunter gar nicht abgebildet werden.

Mit Hirndruck‑, Blutdruck- und EKG-Daten wird die Vorhersage intrakranieller Druckerhöhungen trainiert

Prädiktionsmodelle können helfen, diese Einflussfaktoren anhand vorhandener Daten individuell zu bestimmen. Daten des invasiven Hirndruckmonitorings werden zusammen mit Blutdruck und Elektrokardiographie (EKG) in hoher Abtastrate genutzt, um Modelle für die Vorhersage intrakranieller Druckerhöhungen zu trainieren. Hier kommen die vorher erwähnten MIMIC-Datensätze zum Einsatz, um an Daten von 100 bis 120 Patienten mit einer Abtastrate von 50 Hz Vorhersagen zu tätigen. Es gelang mit bis zu einer AUC-ROC von 0,87, innerhalb von 6 h vor der hypertensiven Phase diese vorherzusagen [23, 34, 35].

Auch höhere Frequenzen können mit neuronalen Netzen und Autoencodern klassifiziert werden (400-Hz-Abtastrate, n = 60; [40]). Bei diesen wellenförmigen Daten besteht das Problem, dass aufgrund der Menge nicht alle Daten gleichzeitig genutzt werden können und es sich meistens um kleine Patientenkohorten handelt. Daher beruht ein weiterer Ansatz auf der Präprozessierung hochfrequenter Daten und der Extraktion von Kurvencharakteristika, welche zum Training der Modelle genutzt werden. Hier werden mit einer weiteren Methode zur Klassifizierung, des „boosted decision tree“, eine AUC-ROC von über 0,93 erreicht, um eine hypertensive Phase in den nächsten 30 min vorherzusagen (n = 37, Monocenterstudie, keine externe Validierung; [19, 46]). Eine Multicenterstudie mit drei Patientenkohorten zeigte eine gute Transition der Modelle der Originalstudie hin zu einer zweiten erwachsenen Validierungskohorte und eine etwas schlechtere Transition bei einer pädiatrischen Kohorte (0,85 hin zu 0,79). Es handelt sich um eine minutiöse Auflösung der üblichen hochfrequenten Daten zusammen mit klinischen Informationen (z. B. Pupillenreaktion, Glascow Coma Scale; [17, 18]). Ebenfalls wurden CT-Bilder genutzt, um mit einer „support vector machine“ hypertensive Phasen vorherzusagen, wobei eine Genauigkeit von 70,2 % erreicht wurde (Studie: n = 17 und insgesamt 56 CTs; [8]).

Bei einer umfangreichen schwedischen Kohorte von Traumapatienten (n = 472, Multicenterstudie) wurden 14 Variablen genutzt, um ein dynamisches Modell mit verschiedenen Zeitblöcken mittels logistischer Regression zu trainieren. An Tag 5 konnte eine Prädiktion einer 30-Tages-Mortalität von 87 % im Vergleich zu Tag 1 mit 67 % ermittelt werden [41]. Die Stärke dieser Modelle ist, dass sie auf größeren Kohorten beruhen. Trotzdem wird eine Transition in die echte Welt nur mit noch größeren Modellen und mehr externer Validierung möglich sein.

Eigene Arbeiten

Wir konzentrieren uns auf die Analyse von Patienten mit invasivem Hirndruckmonitoring auf der Intensivstation. Eine Kohorte der letzten 10 Jahre der Neurointensivstation des Universitätsklinikums Hamburg-Eppendorf (UKE) von über 1400 Patienten, wurde zum Trainieren rekurrenter neuronaler Netze („long short time memory“) genutzt. Es gelang mit einer AUC-ROC von 0,95 kritische Phasen 3 Stunden vor Entstehung vorherzusagen, die kurz (<= 2 h) oder langanhaltend (>2 h) waren. Hier war es wesentlich einfacher für das Modell, langanhaltende Phasen vorherzusagen. Ebenfalls konnten wir, mit akzeptablem mittlerem Fehler den intrakraniellen Druck (ICP) vorhersagen, ohne diesen Wert zuvor als Input genutzt zu haben. Diese Daten haben wir mit den erwähnten externen Datenbanken (MIMIC und eICU) evaluiert. Insgesamt waren es ca. 2400 Patienten mit invasivem Hirndruckmonitoring innerhalb der externen Datenbanken. Einen großen Wert haben wir dabei auf die klinische Interpretierbarkeit gelegt (Tab. 2).

Tab. 2 Prädiktion des intrakraniellen Druckes mit rekurrenten neuronalen Modellen

Aussicht

Aktuell gibt es wenig prospektive klinische Studien zur Anwendung von KI (Tab. 3). Einer Studie gelang es, im Rahmen der Sepsisprädikation einen Algorithmus des maschinellen Lernens zu nutzen, um eine Sepsis in den nächsten 4 h vorherzusagen. Es wurde eine randomisierte Studie an 142 Patienten durchgeführt, bei der 67 Patienten mittels Algorithmus überwacht wurden. Die Aufenthaltsdauer auf der Intensivstation, der gesamte Krankenhausaufenthalt und die Mortalität waren in der Interventionsgruppe signifikant reduziert [24].

Tab. 3 Übersicht der wichtigsten Publikationen zur Anwendung künstlicher Intelligenz in der Medizin

Auf der neurologischen Intensivstation können die vorgestellten Modelle zur Vorhersage von Hirndruck, Vasospasmen, Bewusstsein oder Outcome in der Zukunft eine große Unterstützung leisten. Die jetzt schon bestehenden Modelle müssen im klinischen Einsatz zeigen, dass Sie einen Vorteil für den Patienten bringen. Es bedarf der weiteren Entwicklung von KI basierenden Modellen, um die unterschiedlichen Aspekte in der komplexen Behandlung schwerkranker neurologischer Patienten noch besser zu beleuchten. Ebenfalls sollten mehr Standards bei der Evaluation von Modellen an z. B. externen Kohorten etabliert werden. Hierzu können die vorher beschriebenen publizierten Datenbanken als Benchmark dienen. Damit die Modelle in der Klinik auf Akzeptanz treffen, sollte neben einer intuitiven Benutzeroberfläche, ein Schwerpunkt auf das Nachvollziehen der Entscheidung gelegt werden. Entscheidungsbäume können neben neueren gradientenbasierten Methoden hilfreich sein.

Einen großen Vorteil bei der Anwendung von maschinellem Lernen hinsichtlich des medizinischen Datenschutzes gibt es, da mehrere 100.000 Informationen über die Behandlung von Patienten fundiert und nützlich für die Behandlung zukünftiger Patienten anhand von Modellen gespeichert werden könnten. Dies kann als eine Art Kompression der entscheidenden Information verstanden werden. Der „Open-source“-Gedanke ist ein entscheidender Baustein, daher auch eine Bereitstellung medizinischer Daten in deidentifizierter Art und Weise. Dies sollte in Deutschland in Zukunft noch mehr vorangetrieben werden, ein Vorbild können hier bestehende Ressourcen wie z. B. PhysioNet.org sein.

In Deutschland haben wir seit über 10 Jahren in der Medizin Prozesse optimiert und einen großen Wert auf Digitalisierung der Krankenhausstrukturen gelegt. Im nächsten Schritt müssen wir die technischen und rechtlichen Voraussetzungen schaffen, um die bisher erhobenen und zukünftigen Daten für die KI-Forschung nutzbar zu machen. Forschungsinitiativen einiger Kliniken können nur eine Übergangslösung für eine zukünftige nationale Forschungsplattform sein. Während der SARS-CoV-2(„severe acute respiratory syndrome coronavirus type 2“)-Pandemie haben wir gelernt, dass wir in Deutschland die meisten Intensivbetten pro Einwohner weltweit haben. Wenn wir eine nationale Forschungsplattform hätten, in der die Behandlungsinformationen anonymisiert zur Verfügung stünden, hätten wir in Deutschland die wichtigste Ressource für KI-Forschung in der Intensivmedizin weltweit. Diese Ressource ist wichtig für die Zukunft der KI-Forschung in Deutschland und auch für den Wirtschaftsstandort Deutschland.

Die internationale KI-Forschungsgemeinschaft lebt vom „Open-source“-Gedanken

Dies muss in den internationalen Wettbewerb mit den USA und China gestellt werden. Beide Länder stellen schon seit einigen Jahren medizinische Daten anonymisiert der KI-Forschung zur Verfügung (s. oben). Die internationale KI-Forschungsgemeinschaft lebt von einem „Open-source“-Gedanken. Daher wird es nötig sein, bestehende internationale Plattformen wie z. B. PhysioNet.org zu nutzen. So könnten noch besser generalisierende Modelle trainiert werden und ein Daten-Bias während des Trainings von Modellen so gut es geht zu minimieren.

Für ein „Decision-support“-Tool, welches auf einem KI-Modell basiert, müssen bestehende Gesetze für die Zulassungen von Medizinprodukten geändert werden. Durch die gelernte Information bei laufender Nutzung kann sich das zugrunde liegende Modell für zukünftige Behandlungsempfehlungen ändern. Neue Standards oder Behandlungsansätze in der Therapie müssen in den laufenden Betrieb solcher Software eingepflegt/erlernt werden. Kommerziell angebotene Software muss vor der Anwendung überprüft werden, ob die Vorhersagen sinnvoll sind. Wir sehen hier insbesondere die universitäre Medizin und die universitäre KI-Forschung in der Verantwortung, solche Software zu evaluieren und zu überwachen. Daher ist es neben der Mitentwicklung und Erprobung von KI wichtig, bei dem technischen Fortschritt in der KI-Forschung mitzuhalten. Ansonsten machen wir uns in Deutschland von möglicherweise nicht gut funktionierenden KI-Algorithmen abhängig.

Fazit für die Praxis

  • Die neue datengetriebene Forschung in der Medizin wird letztendlich dem Behandlerteam und dem Patienten zugutekommen.

  • Es wird möglich sein, sich besser in der medizinischen Datenflut zurechtzufinden, Fehler zu minimieren und präzise individuelle Vorhersagen zu treffen.

  • Letztendlich wird die Arbeitszeit am Computer reduziert und es bleibt wieder mehr Zeit für den Patienten.

  • Somit werden wir diese Technik nutzen können, um wieder ein Stück mehr Menschlichkeit in die Behandlung und in die Interaktion mit dem Patienten zurückzubringen.