Skip to main content

Advertisement

Log in

Ants detect but do not discriminate diseased workers within their nest

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Social insects have evolved an array of individual and social behaviours that limit pathogen entrance and spread within the colony. The detection of ectoparasites or of fungal spores on a nestmate body triggers their removal by allogrooming and appears as a primary component of social prophylaxis. However, in the case of fungal infection, one may wonder whether ant workers are able to detect, discriminate and keep at bay diseased nestmates that have no spores over their cuticle but which constitute a latent sanitary risk due to post-mortem corpse sporulation. Here, we investigate the ability of Myrmica rubra workers to detect and discriminate a healthy from a diseased nestmate infected by the entomopathogen Metarhizium anisopliae. During dyadic encounters in a neutral location, workers were more aggressive towards isolated sick nestmates on the 3rd post-infection day. However, no such detection or discrimination of fungus-infected nestmates occurred in a social context inside the nest or at the nest entrance. Gatekeepers never actively rejected incoming diseased nestmates that rather spontaneously isolated themselves outside the nest. Our study reveals that ant workers may detect health-dependent cues and that their ‘acceptance level’ of sick nestmates is tunable depending on the social context. This raises questions about possible trade-offs between a social closure to pathogens and risks of erroneous rejection of healthy nestmates. Social isolation of moribund ants also appears as a widespread prophylactic strategy of social insects allowing them to reduce exposure to pathogens and to spare costs associated with the management of infected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arthurs S, Thomas MB (2001) Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in Mycosed cadavers of Schistocerca gregaria. J Invertebr Pathol 78:59–65

    Article  CAS  PubMed  Google Scholar 

  • Baracchi D, Fadda A, Turillazzi S (2012) Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. J Insect Physiol 58:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Berlese A (1903) Diagnosi di alcune nuove specie di Acari italiani mirmecofili e liberi

  • Bidochka MJ, Clark DC, Lewis MW, Keyhani NO (2010) Could insect phagocytic avoidance by entomogenous fungi have evolved via selection against soil amoeboid predators? Microbiology 156:2164–2171

    Article  CAS  PubMed  Google Scholar 

  • Boecking O, Spivak M (1999) Behavioural defences of honey bees against Varroa jacobsoni oud. Apidologie 30:141–158

    Article  Google Scholar 

  • Boecking O, Rath W, Drescher W (1992) Apis mellifera removes Varroa jacobsoni and Tropilaelaps clareae from sealed brood cells in the tropics. ABJ (USA)

  • Boomsma JJ, Schmid-Hempel P, Hughes WOH, Fellowes MDE, Holloway GJ, Rolff J (2005) Life histories and parasite pressure across the major groups of social insects. Insect Evol Ecology Proc R Entomol Soc 22:139–175

    Google Scholar 

  • Bos N, Lefevre T, Jensen AB, D’Ettorre P (2012) Sick ants become unsociable. J Evol Biol 25:342–351

    Article  CAS  PubMed  Google Scholar 

  • Boucias DG, Pendland JC (1998) Entomopathogenic fungi: fungi imperfecti. In: Principles of insect pathology. Springer, USA

  • Boulay R, Hefetz A, Soroker V, Lenoir A (2000) Camponotus fellah Colony integration: worker individuality necessitates frequent hydrocarbon exchanges. Anim Behav 59:1127–1133

    Article  PubMed  Google Scholar 

  • Boulay R, Lenoir A (2001) Social isolation of mature workers affects nestmate recognition in the ant Camponotus fellah. Behav Proc. 55:67–73

  • Boulay R, Katzav-Gozansky T, Hefetz A, Lenoir A (2004) Odour convergence and tolerance between nestmates through trophallaxis and grooming in the ant Camponotus fellah. Insect Soc 51:55–61

    Article  Google Scholar 

  • Buczkowski G, Silverman J (2005) Context-dependent nestmate discrimination and the effect of action 445 thresholds on exogenous cue recognition in the argentine ant. Anim Behav 69:741–749

    Article  Google Scholar 

  • Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey-bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Tech 8:533–538

    Article  Google Scholar 

  • Calleri DV, Reid EM, Rosengaus RB, Vargo EL, Traniello JF (2006) Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc Lond B Biol Sci 273:2633–2640

    Article  Google Scholar 

  • Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc Lond B Biol Sci 274:2013–2017

    Article  Google Scholar 

  • Choe DH, Millar JG, Rust MK (2009) Chemical signals associated with life inhibit necrophoresis in argentine ants. Proc Natl Acad Sci 106:8251–8255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter SC, Kilner RM (2010) Personal immunity versus social immunity. Behav Ecol 21:663–668

    Article  Google Scholar 

  • Couvillon MJ, Ratnieks FL (2008) Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an “undesirable–absent” recognition system. Behav Ecol Sociobiol 62:1099–1105

    Article  Google Scholar 

  • Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond Ser B Biol Sci 364:129–142

    Article  Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:693–702

    Article  Google Scholar 

  • Dalecky A, Renucci M, Tirard A, Debout G, Roux M, Kjellberg F, Provost E (2007) Changes in composition of cuticular biochemicals of the facultatively polygynous ant Petalomyrmex phylax during range expansion in Cameroon with respect to social, spatial and genetic variation. Mol Ecol 16:3778–3791

    Article  PubMed  Google Scholar 

  • Diez L, Moquet L, Detrain C (2013) Post-mortem changes in chemical profile and their influence on corpse removal in ants. J Chem Ecol 39:1424–1432

    Article  CAS  PubMed  Google Scholar 

  • Downs SG, Ratnieks FL (2000) Adaptive shifts in honey bee (Apis mellifera L.) guarding behaviour support predictions of the acceptance threshold model. Behav Ecol 11:326–333

    Article  Google Scholar 

  • El-Awami IO, Dent DR (1995) The interaction of surface and dust particle size on the pick-up and grooming behaviour of the German cockroach Blattella germanica. Entomol Exp Appl 77:81–87

    Article  Google Scholar 

  • Elmes GW (1973) Observations on density of queens in natural colonies of Myrmica rubra L.(hymenoptera: formicidae). J Anim Ecol 42:761–771

    Article  Google Scholar 

  • Errard C, Hefetz A (1997) Label familiarity and discriminatory ability of ants reared in mixed groups. Insect Soc 44:189–198

    Article  Google Scholar 

  • Evans HC, Groden E, Bischoff JF (2010) New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA. Fungal Biology. 114:451–466

  • Evans JD, Spivak M (2010) Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 103:62–72

    Article  Google Scholar 

  • Fürst MA, Durey M, Nash DR (2011) Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc R Soc Lond B Biol Sci. rspb20110581

  • Gamboa GJ, Reeve HK, Holmes WG (1991) Conceptual issues and methodology in kin recognition research, a critical discussion. Ethology 88:109–127

    Article  Google Scholar 

  • Gillespie JP, Burnett C, Charnley AK (2000) The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. J Insect Physiol 46:429–437

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Tokman DM, Gonzalez-Santoyo I, Lanz-Mendoza H, Aguilar AC (2010) Territorial damselflies do not show immunological priming in the wild. Physiol Entomol 35:364–372

    Article  Google Scholar 

  • Gratwick M (1957) The contamination of insects of different species exposed to dust deposits. Bull Entomol Res 48:741–753

    Article  CAS  Google Scholar 

  • Greene MJ, Gordon DM (2003) Social insects: cuticular hydrocarbons inform task decisions. Nature 423:32–32

    Article  CAS  PubMed  Google Scholar 

  • Groden E (2005) The impact of nest soil on Metarhizium anisopliae infection of the European fire ant, Myrmica rubra (Hymenoptera; Formicidae). In: The 2005 ESA Annual Meeting and Exhibition

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Palaeontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hänel H (1982) The life cycle of the insect pathogenic fungus Metarhizium anisopliae in the termite Nasutitermes exitiosus. Mycopathologia 80:137–145

    Article  Google Scholar 

  • Haskins CP, Haskins EF (1974) Notes on necrophoric behaviour in the archaic ant Myrmecia vindex. Psyche 81:258–267

    Article  Google Scholar 

  • Hauton C, Smith VJ (2007) Adaptive immunity in invertebrates: a straw house without a mechanistic foundation. BioEssays 29:1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Heinze J, Walter B (2010) Moribund ants leave their nests to die in social isolation. Curr Biol 20:249–252

    Article  CAS  PubMed  Google Scholar 

  • Hlavac TF (1975) Grooming systems of insects: structure, mechanics. Ann Entomol Soc Am 68:823–826

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard: Harvard University Press

  • Hughes WOH (2005) Life histories and parasite pressure across the major groups of social insects. Insect Evol Ecol Proc R Entomol Soc 211:139–139

    Google Scholar 

  • Hughes WOH, Boomsma JJ (2004) Genetic diversity and disease resistance in leafcutting ant societies. Evolution 58:1251–1260

    Article  PubMed  Google Scholar 

  • Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc Lond B 269:1811–1819

    Article  Google Scholar 

  • Hughes DP, Araujo JPM, Loreto RG, Quevillon L, De Bekker C, Evans HC (2016) Chapter eleven-from so simple a beginning: the evolution of behavioral manipulation by fungi. Adv Genet 94:437–469

    Article  CAS  PubMed  Google Scholar 

  • Hung SY, Boucias DG (1992) Influence of Beauveria bassiana on the cellular defence response of the beet armyworm, Spodoptera exigua. J Invertebr Pathol 60:152–158

    Article  Google Scholar 

  • Ichinose K (1991) Seasonal variation in nestmate recognition in Paratrechina flavipes (smith) worker ants (hymenoptera: formicidae). Anim Behav 41:1–6

    Article  Google Scholar 

  • Jutsum AR, Saunders TS, Cherrett JM (1979) Intraspecific aggression in the leafcutting ant Acromyrmex octospinosus. Anim Behav 27:839–844

    Article  Google Scholar 

  • Kurtti TJ, Keyhani NO (2008) Intracellular infection of tick cell lines by the entomopathogenic fungus Metarhizium anisopliae. Microbiology 154:1700–1709

    Article  CAS  PubMed  Google Scholar 

  • Lahav S, Soroker V, Vander Meer RK, Hefetz A (1998) Nestmate recognition in the ant Cataglyphis niger: do queens matter? Behav Ecol Sociobiol 43:203–212

    Article  Google Scholar 

  • Lenoir A, Fresneau D, Errard C, Hefetz A (1999) Individuality and colonial identity in ants: the emergence of the social representation concept. In: Information processing in social insects. Basel: Birkhäuser

  • Lenoir A, Cuisset D, Hefetz A (2001) Effects of social isolation on hydrocarbon pattern and nestmate recognition in the ant Aphaenogaster senilis (Hymenoptera, Formicidae). Insect Soc 48:101–109

    Article  Google Scholar 

  • Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the argentine ant, Linepithema humile. Naturwissenschaften 87:412–416

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yamane S, Wang Q, Yamamoto H (1998) Nestmate recognition and temporal modulation in the patterns of cuticular hydrocarbons in natural colonies of japanese carpenter ant Camponotus japonicus mayr (formicidae). J Ethol 16:57–65

    Article  CAS  Google Scholar 

  • Marikovsky PI (1962) On some features of behaviour of the ants Formica rufa L. Infected with fungous disease. Insect Soc 9:173–179

    Article  Google Scholar 

  • Martin SJ, Helanterä H, Drijfhout FP (2011) Is parasite pressure a driver of chemical cue diversity in ants? Proc R Soc Lond B Biol Sci. 278:496–503

    Article  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16:295–300

    Article  PubMed  Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Article  Google Scholar 

  • Myers JH, Rothman LE (1995) Virulence and transmission of infectious diseases in humans and insects: evolutionary and demographic patterns. Trends Ecol Evol 10:194–198

    Article  CAS  PubMed  Google Scholar 

  • Oi DH, Pereira RM (1993) Ant behaviour and microbial pathogens (Hymenoptera: Formicidae). Fla Entomol:63–74

  • Okuno M, Tsuji K, Sato H, Fujisaki K (2012) Plasticity of grooming behaviour against entomopathogenic 537 fungus Metarhizium anisopliae in the ant Lasius japonicus. J Ethol 30:23–27

    Article  Google Scholar 

  • Oron AP, Hoff PD (2006) Kruskal-Wallis and Friedman type tests for nested effects in hierarchical designs. Working paper 68. In: Center for Statistics and the social sciences. University of Washington, Seattle (USA)

    Google Scholar 

  • Osborne LS, Landa Z (1992) Biological control of whiteflies with entomopathogenic fungi. Fla Entomol:456–471

  • Reber A, Chapuisat M (2012) No evidence for immune priming in ants exposed to a fungal pathogen. PLoS One 7:353–353

    Google Scholar 

  • Reber A, Purcell J, Buechel SD, Buri P, Chapuisat M (2011) The expression and impact of antifungal grooming in ants. J Evol Biol 24:954–964

    Article  CAS  PubMed  Google Scholar 

  • Reeve HK (1989) The evolution of conspecific acceptance thresholds. Am Nat.133:407–435

  • Richard FJ, Aubert A, Grozinger CM (2008) Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 6:50–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues S, Peveling R, Nagel P, Keller S (2005) The natural distribution of the entomopathogenic soil fungus Metarhizium anisopliae in different regions and habitat types in Switzerland. In: Insect Pathogens Insect Parasit Nematodes Melolontha, pp 185–188

  • Rueppell O, Hayworth MK, Ross NP (2010) Altruistic self-removal of health compromised honey bee workers from their hive. J Evol Biol 23:1538–1546

    Article  CAS  PubMed  Google Scholar 

  • Salvy M, Martin C, Bagneres AG, Provost E, Roux M, Le Conte Y, Clement JL (2001) Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitology 122:145–159

    Article  CAS  PubMed  Google Scholar 

  • Schlüns H, Crozier RH (2009) Molecular and chemical immune defences in ants. Myrmecol News 12:237–249

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defences. Annu Rev Entomol 50:529–551

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AM, D'Ettorre P, Pedersen JS (2010) Research low levels of nestmate discrimination despite high genetic differentiation in the invasive pharaoh ant

  • Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Tauer: Lutra

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  CAS  PubMed  Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. Adv 566 Insect Physiol 32:1201–1248

    Google Scholar 

  • Spivak M, Reuter GS (2001) Varroa destructor infestation in untreated honey bee (hymenoptera: Apidae) colonies selected for hygienic behaviour. J Econ Entomol 94:326–331

    Article  CAS  PubMed  Google Scholar 

  • Starks PT, Fischer DJ, Watson RE, Melikian GL, Nath SD (1998) Context-dependent nestmate discrimination in the paper wasp, Polistes dominulus: a critical test of the optimal acceptance threshold model. Anim Behav 56:449–458

    Article  PubMed  Google Scholar 

  • Steiner FM, Schlick-Steiner BC, Moder K, Stauffer C, Arthofer W, Buschinger A, Espadaler X, Christian E, Einfinger K, Lorbeer E (2007) Abandoning aggression but maintaining self-nonself discrimination as a first stage in ant supercolony formation. Curr Biol 17:1903–1907

    Article  CAS  PubMed  Google Scholar 

  • Stuart RJ, Herbers JM (2000) Nest mate recognition in ants with complex colonies: within-and between-population variation. Behav Ecol 11:676–685

    Article  Google Scholar 

  • Tanner CJ, Adler FR (2009) To fight or not to fight: context-dependent interspecific aggression in competing ants. Anim Behav 77:297–305

    Article  Google Scholar 

  • Tompkins DM, Begon M (1999) Parasites can regulate wildlife populations. Parasitol Today 15:311–313

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K (2010) What brings peace to the world of ants (Hymenoptera: Formicidae)? Myrmecol News 13:130–132

    Google Scholar 

  • Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci 100:1078–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ugelvig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971

    Article  CAS  PubMed  Google Scholar 

  • Ugelvig LV, Kronauer DJ, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc Lond B Biol Sci. 277:2821–2828

    Article  Google Scholar 

  • Wagner D, Brown MJ, Broun P, Cuevas W, Moses LE, Chao DL, Gordon DM (1998) Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. J Chem Ecol 24:2021–2037

    Article  CAS  Google Scholar 

  • Walker TN, Hughes W (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5:446–448

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson EO, Durlach NI, Roth LM (1958) Chemical releasers of necrophoric behaviour in ants. Psyche 65:108–114

    Article  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423

    Article  CAS  PubMed  Google Scholar 

  • Yan S (2005) Evaluation of local pathogenic fungi, boric acid, and their potential synergism for control of the European fire ant, Myrmica rubra (L.)

  • Yek SH, Muller UG (2011) The metapleural glands of ants. Biol Rev 86:774–779

    Article  PubMed  Google Scholar 

  • Zhukovskaya M, Yanagawa A, Forschler BT (2013) Grooming behaviour as a mechanism of insect disease defence. Insects 4:609–630

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their comments and Julien Hendrickx for helping to collect ants. This study was funded by a Ph.D. grant to Mr. Leclerc from FRIA (Fonds pour la Recherche dans l’Industrie et dans l’Agriculture) and by a research credit (CDR J.0092.16) from FRS-FNRS (Fonds de la Recherche Scientifique). C.D. is Research Director from the Belgian National Fund for Scientific Research (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Leclerc.

Ethics declarations

We declare that the experiments comply with the current laws of Belgium.

Additional information

Communicated by: Alain Dejean

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclerc, JB., Detrain, C. Ants detect but do not discriminate diseased workers within their nest. Sci Nat 103, 70 (2016). https://doi.org/10.1007/s00114-016-1394-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-016-1394-8

Keywords

Navigation