Skip to main content

Advertisement

Log in

Denticle-embedded ampullary organs in a Cretaceous shark provide unique insight into the evolution of elasmobranch electroreceptors

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Here, we report a novel type of dermal denticle (or placoid scale), unknown among both living and fossil chondrichthyan fishes, in a Cretaceous lamniform shark. By their morphology and location, these dermal denticles, grouped into clusters in the cephalic region, appear to have been directly associated with the electrosensory ampullary system. These denticles have a relatively enlarged (∼350 μm in diameter), ornamented crown with a small (∼100 μm) asterisk- or cross-shaped central perforation connected to a multi-alveolate internal cavity. The formation of such a complex structure can be explained by the annular coalescence and fusion, around an ampullary vesicle, of several developmental units still at papillary stage (i.e. before mineralization), leading to a single denticle embedding an alveolar ampulla devoid of canal. This differs from larger typical ampullae of Lorenzini with a well-developed canal opening in a pore of the skin and may represent another adaptive response to low skin resistance. Since it has been recently demonstrated that ampullary organs arise from lateral line placodes in chondrichthyans, this highly specialized type of dermal denticle (most likely non-deciduous) may be derived from the modified placoid scales covering the superficial neuromasts (pit organs) of the mechanosensory lateral line system of many modern sharks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andres KH, von Düring M (1988) Comparative anatomy of vertebrate electroreceptors. In: Hamann W, Iggo A (eds) Transduction and cellular mechanisms in sensory receptors. Progress in Brain Research 74 113–131

  • Baker CVH, Modrell MS, Gillis JA (2013) The evolution and development of vertebrate lateral line electroreceptors. J Exp Biol 216:2515–2522

    Article  PubMed  Google Scholar 

  • Budker P (1938) Les cryptes sensorielles et les denticules cutanés des plagiostomes. Ann Inst Oceanogr 18:207–288

    Google Scholar 

  • Camilieri-Asch V, Kempster RM, Collin SP, Johnstone RW, Theiss SM (2013) A comparison of the electrosensory morphology of a euryhaline and a marine stingray. Zoology 116:270–276

    Article  PubMed  Google Scholar 

  • Cappetta H, Case GR (1975) Sélaciens nouveaux du Crétacé du Texas. Geobios 8:303–307

    Article  Google Scholar 

  • Cavin L, Tong H, Boudad L, Meister C, Piuz A, Tabouelle J, Aarab M, Amiot R, Buffetaut E, Dyke G, Hua S, Le Lœuff J (2010) Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: an overview. J Afr Earth Sci 57:391–412

    Article  Google Scholar 

  • Donoghue PC (2002) Evolution of development of the vertebrate dermal and oral skeletons: unraveling concepts, regulatory theories, and homologies. Paleobiology 28:474–507

    Article  Google Scholar 

  • Freitas R, Zhang G, Albert JS, Evans DH, Cohn MJ (2006) Developmental origin of shark electrosensory organs. Evol Dev 8:74–80

    Article  PubMed  Google Scholar 

  • Gillis JA, Modrell MS, Northcutt RG, Catania KC, Luer CA, Baker CVH (2012) Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development 139:3142–3146

    Article  CAS  PubMed  Google Scholar 

  • Green SA, Simoes-Costa M, Bronner ME (2015) Evolution of vertebrates as viewed from the crest. Nature 520:474–482

    Article  CAS  PubMed  Google Scholar 

  • Hueter RE, Mann DA, Maruska KP, Sisneros JA, Demski LS (2004) Sensory biology of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 325–368

    Google Scholar 

  • Jørgensen JM (2005) Morphology of electroreceptive sensory organs. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. New York, pp 47–67

    Chapter  Google Scholar 

  • Kajiura SM (2001) Head morphology and electrosensory pore distribution of carcharhinid and sphyrnid sharks. Environ Biol Fish 61:125–133

    Article  Google Scholar 

  • Kajiura SM, Cornett AD, Yopak KE (2010) Sensory adaptations to the environments: electroreceptors as a case study. In: Carrier JC, Musick JA, Heithaus MR (eds) Sharks and their relatives II—biodiversity, adaptive physiology, and conservation. CRC Press, Boca Raton, pp 393–433

    Chapter  Google Scholar 

  • Kitamura N (2013) “Carchariasamonensis (Chondrichthyes, Odontaspididae) from the Upper Cretaceous Mifune group in Kumamoto, Japan. Paleontol Res 17:230–235

    Article  Google Scholar 

  • Lee RTH, Thiery JP, Carney TJ (2013) Dermal fin rays and scales derive from mesoderm, not neural crest. Curr Biol 23:R336–R337

    Article  PubMed  Google Scholar 

  • Martill DM, Ibrahim N, Brito PM, Baider L, Zhouri S, Loveridge R, Naish D, Hing R (2011) A new Plattenkalk Konservat Lagerstätte in the Upper Cretaceous of Gara Sbaa, south-eastern Morocco. Cretac Res 32:433–446

    Article  Google Scholar 

  • McKenzie RW, Motta PJ, Rohr JR (2014) Comparative squamation of the lateral line canal pores in sharks. J Fish Biol 84:1300–1311

    Article  CAS  PubMed  Google Scholar 

  • Meyer W, Seegers U (2012) Basics of skin structure and function in elasmobranchs: a review. J Fish Biol 80:1940–1967

    Article  CAS  PubMed  Google Scholar 

  • Mongera A, Nüsslein-Volhard C (2013) Scales of fish arise from mesoderm. Curr Biol 23:R338–R339

    Article  CAS  PubMed  Google Scholar 

  • Néraudeau D, Allain R, Perrichot V, Videt B, Lapparent de Broin F de, Guillocheau F, Philippe M, Rage J-C, Vullo R (2003) Découverte d’un dépôt paralique à bois fossiles, ambre insectifère et restes d’Iguanodontidae (Dinosauria, Ornithopoda) dans le Cénomanien inférieur de Fouras (Charente-Maritime, Sud-Ouest de la France). C R Palevol 2:221–230

  • Ørvig T (1972) The latero-sensory component of the dermal skeleton in lower vertebrates and its phyletic significance. Zool Scr 1:139–155

    Article  Google Scholar 

  • Peach MB, Marshall NJ (2009) The comparative morphology of pit organs in elasmobranchs. J Morphol 270:688–701

    Article  CAS  PubMed  Google Scholar 

  • Peach MB, Rouse GW (2004) Phylogenetic trends in the abundance and distribution of pit organs of elasmobranchs. Acta Zool 85:233–244

    Article  Google Scholar 

  • Petit G, Budker P (1935) Sur la différenciation de dents cutanées, liée à la présence de cryptes sensorielles, chez quelques sélaciens. C R Hebd Séances Acad Sci 201:737–740

    Google Scholar 

  • Pradel A, Tafforeau P, Maisey JG, Janvier P (2011) A new Paleozoic Symmoriiformes (Chondrichthyes) from the Late Carboniferous of Kansas (USA) and cladistic analysis of early chondrichthyans. PLoS ONE 6:e24938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raschi W (1986) A morphological analysis of the ampullae of Lorenzini in selected skates (Pisces, Rajoidei). J Morphol 189:225–247

    Article  Google Scholar 

  • Raschi W, Mackanos LA (1989) The structure of the ampullae of Lorenzini in Dasyatis garouaensis and its implications on the evolution of the freshwater electroreceptive systems. J Exp Zool 252(Suppl 2):101–111

    Article  Google Scholar 

  • Raschi W, Keithan ED, Rhee WCH (1997) Anatomy of the ampullary electroreceptor in the freshwater stingray, Himantura signifer. Copeia 1997:101–107

    Article  Google Scholar 

  • Reif W-E (1978) Type of morphogenesis of the dermal skeleton in fossil sharks. Paläeontol Z 52:110–128

    Article  Google Scholar 

  • Reif W-E (1985) Squamation and ecology of sharks. Cour Forsch Inst Senckenberg 78:1–255

    Google Scholar 

  • Reif W-E, Richter M (2001) Revisiting the lepidomorial and the odontode regulation theories of dermo-skeletal morphogenesis. N Jb Geol Paläont (Abh) 219:285–304

    Google Scholar 

  • Sallan LC, Coates MI (2014) The long-rostrumed elasmobranch Bandringa Zangerl, 1969, and taphonomy within a Carboniferous shark nursery. J Vertebr Paleontol 34:22–33

    Article  Google Scholar 

  • Shimada A, Kawanishi T, Kaneko T, Yoshihara H, Yano T, Inohaya K, Kinoshita M, Kamei Y, Tamura K, Takeda H (2013) Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 4:1639

    Article  PubMed Central  PubMed  Google Scholar 

  • Szabo T, Kalmijn AJ, Enger PS, Bullock TH (1972) Microampullary organs and a submandibular sense organ in the fresh water ray, Potamotrygon. J Comp Physiol 79:15–27

    Article  Google Scholar 

  • Theiss SM, Collin SP, Hart NS (2011) Morphology and distribution of the ampullary electroreceptors in wobbegong sharks: implications for feeding behaviour. Mar Biol 158:723–735

    Article  Google Scholar 

  • Tricas TC (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Environ Biol Fish 60:77–92

    Article  Google Scholar 

  • Vullo R, Guinot G, Barbe G (2014) A case of parallelism between a mid-Cretaceous lamniform and modern carcharhiniform sharks. J Vertebr Paleontol Program Abstr 2014:250–251

    Google Scholar 

  • Wada H, Iwasaki M, Kawakami K (2014) Development of the lateral line canal system through a bone remodeling process in zebrafish. Dev Biol 392:1–14

    Article  CAS  PubMed  Google Scholar 

  • Webb JF (2014) Morphological diversity, development, and evolution of the mechanosensory lateral line system. In: Coombs S, Bleckmann H, Fay RR, Popper AN (eds) The lateral line system. Springer Handbook of Auditory Research, vol 48. New York, pp 17–72

    Chapter  Google Scholar 

  • Whitehead DL (2002) Ampullary organs and electroreception in freshwater Carcharhinus leucas. J Physiol Paris 96:391–395

    Article  PubMed  Google Scholar 

  • Whitehead DL, Gauthier ARG, Mu EWH, Bennett MB, Tibbetts IR (2015) Morphology of the ampullae of Lorenzini in juvenile freshwater Carcharhinus leucas. J Morphol 276:481–493

    Article  PubMed  Google Scholar 

  • Wonsettler AL, Webb JF (1997) Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes, Hexagrammidae). J Morphol 233:195–214

    Article  Google Scholar 

  • Wueringer BE (2012) Electroreception in elasmobranchs: sawfish as a case study. Brain Behav Evol 80:97–107

    Article  PubMed  Google Scholar 

  • Yano K, Goto M, Yabumoto Y (1997) Dermal and mucous denticles of a female megamouth shark, Megachasma pelagios, from Hakata Bay, Japan. In: Yano K, Morrissey JF, Yabumoto Y, Nakaya K (eds) Biology of the megamouth shark. Tokai University Press, Tokyo, pp 77–91

    Google Scholar 

Download references

Acknowledgments

We are extremely grateful to G. Barbe for donating the specimen to the UM collections. We thank A.-M. Damiano for the documentation, P. Janvier for the discussion, V. Perrichot for the technical assistance and A. Piuz for the SEM imaging. We also thank the three anonymous reviewers for their constructive comments. G.G. was funded by the Swiss National Science Foundation (200021-140827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Vullo.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vullo, R., Guinot, G. Denticle-embedded ampullary organs in a Cretaceous shark provide unique insight into the evolution of elasmobranch electroreceptors. Sci Nat 102, 65 (2015). https://doi.org/10.1007/s00114-015-1315-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1315-2

Keywords

Navigation