Skip to main content
Log in

Interaction of gut microflora with tannins in feeds

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Tannins (hydrolyzable and condensed) are water-soluble polyphenolic compounds that exert antinutritional effects on ruminants by forming complexes with dietary proteins. They limit nitrogen supply to animals, besides inhibiting the growth and activity of ruminal microflora. However, some gastrointestinal microbes are able to break tannin–protein complexes while preferentially degrading hydrolyzable tannins (HTs). Streptococcus gallolyticus, Lonepinella koalarum and Selenomonas ruminantium are the dominant bacterial species that have the ability to degrade HTs. These tanninolytic microorganisms possess tannin-degrading ability and have developed certain mechanisms to tolerate tannins in feeds. Hence, selection of efficient tanninolytic microbes and transinoculation among animals for long-term benefits become areas of intensive interest. Here, we review the effects of tannins on ruminants, the existence and significance of tannin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin-degrading microorganisms have developed to counter the toxic effects of tannin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar CN, Cruz M, Rodriguez R, Gutierrez-Sanchez G, Ramirez-Coronel A, Augur C (2004) Catechin degradation by several fungal strains isolated from Mexican desert. J Microbiol Biotechnol 14:426–429

    CAS  Google Scholar 

  2. Akin D (1982) Forage cell wall degradation and p-coumaric, ferulic, and sinapic acids. Agron J 74:424–428

    Article  Google Scholar 

  3. Akin D, Rigsby L (1985) Influence of phenolic acids on rumen fungi. Agron J 77:180–182

    CAS  Google Scholar 

  4. Bae HD, McAllister TA, Yanke J, Cheng KJ, Muir AD (1993) Effect of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 59:2132–2138

    PubMed  CAS  Google Scholar 

  5. Bell TA, Etchell JL, Singleton JA, Smart WWG (1965) Inhibition of pectinolytic and cellulolytic enzymes in cucumber fermentation by Sericea. J Food Sci 30:233–239

    CAS  Google Scholar 

  6. Bhat TK, Makkar HPS, Singh B (1996) Isolation of a tannin–protein complex degrading fungus from faeces of hill cattle. Lett Appl Microbiol 22:257–258

    PubMed  CAS  Google Scholar 

  7. Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins—a current perspective. Biodegradation 9:343–357

    Article  PubMed  CAS  Google Scholar 

  8. Broderick GA (1974) In-vitro procedures for estimating rate of ruminal protein degradation and proportions of protein escaping the rumen undegraded. J Nutr 108:181–190

    Google Scholar 

  9. Brooker JD, Lum DK, Miller S, Skene I, O'Donovan LA (1995) Rumen microorganisms as providers of high quality protein. Livest Res Rural Dev 6

  10. Brooker JD, O'Donovan LA, Skene I, Clarke K, Blackall L, Muslera P (1994) Streptococcus caprinus sp nov., a tannin resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18:313–318

    CAS  Google Scholar 

  11. Brooker JD, O'Donovan LA, Skene I, Sellick G (2000) Mechanisms of tannin resistance and detoxification in the rumen. In: Brooker JD (ed) Tannins in livestock and human nutrition, vol 92. Proceedings of an international workshop, Adelaide, Australia, 31 May–2 June 1999, pp 117–122

  12. Chiquette J, Cheng KJ, Costerton JW, Milligan LP (1988) Effect of tannins on the digestibility of two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus) using in-vitro and in sacco techniques. Can J Anim Sci 68:751–760

    Google Scholar 

  13. DeVuyst L, Degeest B (1999) Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium. Appl Environ Microbiol 65:2863–2870

    PubMed  Google Scholar 

  14. Ephraim E, Odenyo A, Ashenafi M (2005) Isolation and characterization of tannin-degrading bacteria from faecal samples of some wild ruminants in Ethiopia. Anim Feed Sci Technol 118:243–253

    Article  Google Scholar 

  15. Fahey GC Jr, Jung HG (1989) Phenolic compounds in forages and fibrous feedstuffs. In: Cheeke PR (ed) Toxicants of plant origin, vol IV. Phenolics. CRC Press, Florida, pp 123–190

    Google Scholar 

  16. Feeney P (1969) Inhibitory effect of oak leaf tannins on the hydrolysis of protein by trypsin. Phytochemistry 8:2119–2126

    Article  Google Scholar 

  17. Foo LY, Jones WT, Porter LJ, Williams VN (1986) Proanthocyanidin polymers of fodder legumes. Phytochemistry 21:933–935

    Google Scholar 

  18. Gamble GR, Akin DE, Makkar HPS, Becker K (1996) Biological degradation of tannins in Sericea lespedza by white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analysed by solid state 13C nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 62:3600–3604

    PubMed  CAS  Google Scholar 

  19. Goel G, Puniya AK, Singh K (2005) Tannic acid resistance in ruminal streptococcal isolates. J Basic Microbiol 45:243–245

    Article  PubMed  CAS  Google Scholar 

  20. Hagerman AE, Butler LG (1981) The specificity of proanthocyanidin–protein interactions. J Biol Chem 256:4494–4497

    PubMed  CAS  Google Scholar 

  21. Haslam E (1989) Plant polyphenols—vegetable tannins. Cambridge University Press, UK

    Google Scholar 

  22. Horigome T, Kumar R, Okamoto K (1988) Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymes in-vitro and in the intestine of rats. Br J Nutr 60:275–285

    Article  PubMed  CAS  Google Scholar 

  23. Jones GA, McAllister TA, Cheng KJ, Muir AD (1994) Effect of sainfoin Onobrychis viciifolia Scop condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl Environ Microbiol 144:8–14

    Google Scholar 

  24. Krause DO, Smith WJM, Brooker JD, McSweeney CS (2005) Tolerance mechanisms of Streptococci to hydrolyzable and condensed tannins. Anim Feed Sci Technol 121:59–75

    Article  CAS  Google Scholar 

  25. Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens new species requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144:8–14

    Article  CAS  Google Scholar 

  26. Krumholz LR, Bryant MP (1988) Characterization of the pyragallol–phloroglucinol isomerase of Eubacterium oxidoreducens. J Bacteriol 170:2472–2479

    PubMed  CAS  Google Scholar 

  27. Krumholz LR, Crawfors RL, Hemling ME, Bryant MP (1987) Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol 169:1886–1890

    PubMed  CAS  Google Scholar 

  28. Kumar R (1991) Anti-nutritional factors: the potential risks of toxicity and methods to alleviate them. In: Speedy A, Pugliese JL (eds) Legume trees and other fodder trees as protein sources for livestock. Proceedings of the FAO expert consultation, MARDI, Kuala Lumpur, Malaysia, 14–18 October 1991 (http://www.fao.org)

  29. Lekha PK, Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Microbiol 44:215–260

    Article  PubMed  CAS  Google Scholar 

  30. Makkar HPS (2003) Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin Res 49:241–256

    Article  ADS  Google Scholar 

  31. Makkar HPS, Singh B, Dawra R (1988) Effect of tannin-rich leaves of Oak Quercus incana on various microbial enzyme activities of the bovine rumen. Br J Nutr 60:287–296

    Article  PubMed  CAS  Google Scholar 

  32. Makkar HPS, Singh B, Kamra DN (1994) Biodegradation of tannins in oak (Quercus incana) leaves by Sporotrichum pulverulentum. Lett Appl Microbiol 18:39–41

    CAS  Google Scholar 

  33. Martin SA, Akin DE (1988) Effect of phenolic monomers on the growth and β-glucosidase activity of Bacteroides ruminicola and on the carboxymethylcellulase, β-glucosidase and xylanase activities of Bacteroides succinogenes. Appl Environ Microbiol 54:3019–3022

    PubMed  CAS  Google Scholar 

  34. McAllister TK, Bae HD, Muir A, Yanke LJ, Cheng KJ (1994) Effect of birdsfoil condensed tannins on endoglucanase activity and the digestion of cellulose filter paper by ruminal fungi. Can J Microbiol 40:298–305

    PubMed  CAS  Google Scholar 

  35. McArthur C, Hagerman AE, Robbins CT (1992) Physiological strategies of mammalian herbivores against plant defenses. In: Palo RT, Robbins CT (eds) Plant defenses against mammalian herbivory. CRC Press, Florida, pp 103–114

    Google Scholar 

  36. McDonald M, Mila I, Scalbert A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44:599–606

    Article  CAS  Google Scholar 

  37. McLeod M (1974) Plant tannins—their role in forage quality. Nutr Abstr Rev 44:803–815

    Google Scholar 

  38. McSweeney CS, Palmer B, Bunch R, Krause DO (1999) Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus. Appl Environ Microbiol 65:3075–3083

    PubMed  CAS  Google Scholar 

  39. McSweeney CS, Palmer B, Bunch R, Krause DO (2001) Microbial interactions with tannins: nutritional consequences for ruminants. Anim Feed Sci Technol 91:83–93

    Article  CAS  Google Scholar 

  40. McSweeney CS, Palmer B, Kennedy PM, Krause DO (1998) Effect of Calliandra tannins on rumen microbial function. Proc Aust Soc Anim Prod 22:289

    Google Scholar 

  41. Mehanso H, Butler LG, Carlson DM (1987) Dietary tannin and salivary proline rich proteins: interaction, induction and defense mechanism. Annu Rev Nutr 7:423–440

    Article  PubMed  Google Scholar 

  42. Miller SM, Brooker JD, Blackall LL (1995) A feral goat rumen fluid inoculum improves nitrogen retention in sheep consuming mulga Acacia aneura diet. Aust J Agric Resour 69:481–493

    Google Scholar 

  43. Miller SM, Klieve AV, Plumb JJ, Aisthorpe R, Blackall LL (1996) Streptococcus caprinus is ineffective as a rumen inoculum to improve digestion of mulga (Acacia aneura) by sheep. Aust J Agric Resour 47:1323–1331

    Article  Google Scholar 

  44. Min BR, Attwood GT, Barry TN, McNabb WC (2002) The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. J Anim Sci Suppl 80:1602

    Google Scholar 

  45. Min BR, Attwood GT, McNabb WC, Molan AL, Barry TN (2005) The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim Feed Sci Technol 121:45–58

    Article  CAS  Google Scholar 

  46. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19

    Article  CAS  Google Scholar 

  47. Min BR, Hart SP (2003) Tannins for suppression of internal parasites. J Anim Sci 81:E102–E109

    Google Scholar 

  48. Molan AL, Waghorn GC, Min BR, McNabb WC (2000) The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in-vitro. Folia Parasitol 47:39–44

    PubMed  CAS  Google Scholar 

  49. Molina DO, Pell AN, Hogue DE (1999) Effects of ruminal inoculations with tannin tolerant bacteria on fibre and nitrogen digestibility of lambs fed a high condensed tannin diet. Anim Feed Sci Technol 81:69–80

    Article  CAS  Google Scholar 

  50. Murdiati TB, McSweeney CS, Campbell RS, Stoltz DS (1990) Prevention of hydrolysable tannin toxicity in goats fed Clidemia hirta by calcium hydroxide supplementation. J Appl Toxicol 10:325–331

    PubMed  CAS  Google Scholar 

  51. Murdiati TB, McSweeney CS, Lowry JB (1992) Metabolism in sheep of gallic acid, tannic acid and hydrolyzable tannin from Terminalia oblongata. Aust J Agric Resour 43:1307–1319

    Article  CAS  Google Scholar 

  52. Nelson KE, Pell AN, Schofield P, Zinder SH (1995) Isolation and characterization of anaerobic ruminal bacterium capable of degrading hydrolyzable tannins. Appl Environ Microbiol 61:3293–3298

    PubMed  CAS  Google Scholar 

  53. Nemoto K, Osawa R, Hirota K, Ono T, Miyake Y (1995) An investigation of gram-negative tannin–protein complex degrading bacteria in fecal flora of various mammals. J Vet Med Sci 57:921–926

    PubMed  CAS  Google Scholar 

  54. Nicholson RL, Butler LG, Asquith TN (1986) Glycoproteins from Colletotrichum graminicola that bind phenols: implications for virulence and survival of phytopathogenic fungi. Phytopathology 76:1315–1318

    CAS  Google Scholar 

  55. O'Donovan L, Brooker JD (2001) Effect of hydrolyzable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147:1025–1033

    PubMed  Google Scholar 

  56. Odenyo AA, McSweeney CA, Palmer B, Negassa D, Osuji PO (1999) In vitro screening of rumen fluid samples from indigenous African ruminants provides evidence for rumen fluid superior capacities to digest tannin-rich fodders. Aust J Agric Resour 50:1147–1157

    CAS  Google Scholar 

  57. Odenyo AA, Osuji PO (1998) Tannin-tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44:905–909

    Article  PubMed  CAS  Google Scholar 

  58. Osawa R (1990) Formation of clear zone on tannic acid treated Brain Heart Infusion agar by Streptococcus sp isolated from feces of koalas. Appl Environ Microbiol 56:829–831

    PubMed  CAS  Google Scholar 

  59. Osawa R (1992) Tannin–protein complex degrading enterobacteria isolated from alimentary tract of koalas and a selective medium for their enumeration. Appl Environ Microbiol 58:1754–1759

    PubMed  CAS  Google Scholar 

  60. Osawa R, Keiko K, Satoshi G, Akira S (2000) Isolation of tannin degrading lactobacilli from humans and fermented foods. Appl Environ Microbiol 66:3093–3097

    Article  PubMed  CAS  Google Scholar 

  61. Osawa R, Fujisawa T, Sly LI (1995a) Streptococcus gallolyticus sp. nov.; gallate degrading organisms formerly assigned to Streptococcus bovis. Syst Appl Environ Microbiol 18:74–78

    Google Scholar 

  62. Osawa R, Rainey F, Fujisawa T, Lang E, Busse HJ, Walsh TP, Stackebrandt E (1995b) Lonepinella koalarum gen nov., sp nov., a new tannin–protein complex degrading bacterium. Syst Appl Microbiol 18:368–373

    CAS  Google Scholar 

  63. Paul SS, Kamra DN, Sastry VRB, Sahu NP, Kumar A (2003) Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nil gai Baselophus tragocamelus. Lett Appl Microbiol 36:377–381

    Article  PubMed  CAS  Google Scholar 

  64. Pell AN, Woolston TK, Nelson KE, Schofield P (2000) Tannins: biological activity and bacterial tolerance. In: Brooker JD (ed) Tannins in livestock and human nutrition, vol. 92. Proceedings of an international workshop, Adelaide, Australia, 31 May–2 June 1999, pp 123–126

  65. Rakesh DD, Bhat TK, Singh B (2000) Effect of fungal treatment on composition, tannin levels and digestibility of black locust (Robinia pseudoacacia) leaves. J Gen Microbiol 46:99–103

    Article  CAS  Google Scholar 

  66. Reed JS (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J Anim Sci 73:1516–1528

    PubMed  CAS  Google Scholar 

  67. Rice EL, Pancholay SK (1973) Inhibition of nitrification by climax ecosystem II Additional evidence and possible role of tannins. Am J Bot 60:691–702

    CAS  Google Scholar 

  68. Samanta S, Giri S, Parua S, Nandi DK, Pati BR, Mondal KC (2004) Impact of tannic acid on the gastrointestinal microflora. Microb Ecol Health Dis 16:32–34

    Article  CAS  Google Scholar 

  69. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  70. Schragle R, Muller W (1990) The influence of selected tannin-containing plant species on the tenacity of pathogenic bacteria in an in-vitro rumen system 1 Communication: the influence of selected plant species on the tenacity of C. perfringens. Zentralbl Veterinarmed Reihe B 37:181–186

    CAS  Google Scholar 

  71. Sharma S, Bhat TK, Dawra RK (1999) Isolation, purification and properties of tannase from Aspergillus niger Van Tieghem. World J Microbiol Biotechnol 15:673–677

    Article  CAS  Google Scholar 

  72. Singh B, Bhat TK, Sharma OP (2001) Biodegradation of tannic acid in an in-vitro ruminal system. Livest Prod Sci 68:259–262

    Article  Google Scholar 

  73. Skene IK, Brooker JD (1995) Characterization for tannin acyl hydrolase activity in ruminal bacterium, Selenomonas ruminantium. Anaerobe 1:321–327

    Article  PubMed  CAS  Google Scholar 

  74. Sly LI, Cahill MM, Osawa R, Fujisawa T (1997) The tannin-degrading species Streptococcus gallolyticus and Streptococcus caprinus are subjective synonyms. Int J Syst Bacteriol 47:893–894

    Article  PubMed  CAS  Google Scholar 

  75. Smart WWG, Bell TA, Stanley NW, Cope WA (1961) Inhibition of rumen cellulase by an extract from Sericea forage. J Dairy Sci 44:1945–1946

    Article  CAS  Google Scholar 

  76. Smith AH, Mackie RI (2004) Effect of condensed tannins on bacterial diversity and metabolic activity in the rat gastrointestinal tract. Appl Environ Microbiol 70:1104–1115

    Article  PubMed  CAS  Google Scholar 

  77. Sotohy SA, Muller W, Ismail AA (1995) In-vitro effect of Egyptian tannin containing plants and their extracts on the survival of pathogenic bacteria. Dtsch Tierarztl Wochenschr 102:344–348

    PubMed  CAS  Google Scholar 

  78. Sotohy SA, Sayed AN, Ahmed MM (1997) Effect of tannin-rich plant Acacia nilotica on some nutritional and bacteriological parameters in goats. Dtsch Tierarztl Wochenschr 104:432–435

    PubMed  CAS  Google Scholar 

  79. Spencer CM, Cai MY, Martin R, Gaffney SH, Goulding PN, Mangolato D, Lilley TH, Haslam E (1988) Polyphenol complexation—some thoughts and observations. Phytochemistry 27:2397–2409

    Article  CAS  Google Scholar 

  80. Tagari H, Henr Y, Tamir M, Volcani R (1965) Effect of carob pod extract on cellulolysis, proteolysis, deamination and protein biosynthesis in an artificial rumen. Appl Environ Microbiol 13:437–442

    CAS  Google Scholar 

  81. Tjakradidjaja AS, Brooker JD, Bottema CDK (2000) Characterization of tannin resistant bacteria from rumen fluid of feral goats and camels with restriction analysis of Amplified 16S rDNA. In: Brooker JD (ed) Tannins in livestock and human nutrition, vol. 92. Proceedings of an international workshop, Adelaide, Australia, 31 May–2 June 1999, pp 161–165

  82. Wiryawan KG, Tangendjaja B, Suryahadi, Brooker JD (2000) Tannin degrading bacteria from Indonesian ruminants. In: Brooker JD (ed) Tannins in livestock and human nutrition, vol. 92. Proceedings of an international workshop, Adelaide, Australia, 31 May–2 June 1999, pp 133–136

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Goel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, G., Puniya, A.K., Aguilar, C.N. et al. Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92, 497–503 (2005). https://doi.org/10.1007/s00114-005-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-005-0040-7

Keywords

Navigation