Skip to main content
Log in

The mechanisms of lift enhancement in insect flight

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Recent studies have revealed a diverse array of fluid dynamic phenomena that enhance lift production during flapping insect flight. Physical and analytical models of oscillating wings have demonstrated that a prominent vortex attached to the wing’s leading edge augments lift production throughout the translational parts of the stroke cycle, whereas aerodynamic circulation due to wing rotation, and possibly momentum transfer due to a recovery of wake energy, may increase lift at the end of each half stroke. Compared to the predictions derived from conventional steady-state aerodynamic theory, these unsteady aerodynamic mechanisms may account for the majority of total lift produced by a flying insect. In addition to contributing to the lift required to keep the insect aloft, manipulation of the translational and rotational aerodynamic mechanisms may provide a potent means by which a flying animal can modulate direction and magnitude of flight forces for manoeuvring flight control and steering behaviour. The attainment of flight, including the ability to control aerodynamic forces by the neuromuscular system, is a classic paradigm of the remarkable adaptability that flying insects have for utilising the principles of unsteady fluid dynamics. Applying these principles to biology broadens our understanding of how the diverse patterns of wing motion displayed by the different insect species have been developed throughout their long evolutionary history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–e
Fig. 3
Fig. 4a–c
Fig. 5a–c
Fig. 6a–c

Similar content being viewed by others

References

  • Alexander DE (1982) Studies on flight control and aerodynamics in dragonflies. PhD dissertation, Duke University, N.C.

  • Alexander DE (1986) Wind tunnel studies of turns by flying dragonflies. J Exp Biol 122:81–98

    CAS  PubMed  Google Scholar 

  • Antonova OA, Brodsky AK, Ivanov VD (1981) Wing beat kinematics of five insect species. Zool Zh 60:506–518

    Google Scholar 

  • Azuma A, Watanabe T (1988) Flight performance of a dragonfly. J Exp Biol 137:221–252

    Google Scholar 

  • Bennett L (1966) Insect aerodynamics: vertical sustaining force in nectar-hovering flight. Science 152:1263–1266

    Google Scholar 

  • Bennett L (1970) Insect flight: lift and rate of change of incidence. Science 167:177–179

    Google Scholar 

  • Bennett L (1977) Clap and fling aerodynamics: an experimental evaluation. J Exp Biol 69:261–272

    Google Scholar 

  • Berg C van den, Ellington CP (1997) The three-dimensional leading-edge vortex of ‘hovering’ model hawkmoth. Philos Trans R Soc Lond B 352:329–340

    Article  Google Scholar 

  • Birch JM, Dickinson MH (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412:729–733

    Article  CAS  PubMed  Google Scholar 

  • Brackenbury J (1990) Wing movements in the bush cricket Tettigonia viridissima and the mantis Ameles spallanziana during natural leaping. J Zool 220:593–602

    Google Scholar 

  • Brackenbury J (1991a) Kinematics of take-off and climbing flight in butterflies. J Zool 224

  • Brackenbury J (1991b) Wing kinematics during natural leaping in the mantids Mantis religiosa and Iris oratoria. J Zool 223:341–356

    Google Scholar 

  • Bradley RG, Smith CW, Wray WO (1974) An experimental investigation of leading-edge vortex augmentation by blowing. NASA

  • Brodsky AK (1991) Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J Exp Biol 161:77–95

    Google Scholar 

  • Brodsky AK (1994) The evolution of insect flight. Oxford University Press, New York

  • Buckholz RH (1981) Measurements of unsteady periodic forces generated by the blowfly flying in a wind tunnel. J Exp Biol 90:163–173

    Google Scholar 

  • Campbell JF (1976) Augmentation of vortex lift by spanwise blowing. J Aircraft 13:727–732

    Google Scholar 

  • Chadwick LE (1940) The wing motion of the dragonfly. Bull Brooklyn Entomol Soc 35:109–112

    Google Scholar 

  • Chaplygin SA (1956) The selected works on wing theory of Sergei A. Chaplygin. San Francisco

  • Cooter RJ, Baker PS (1977) Weis-Fogh clap and fling mechanism in Locusta. Nature 269:53–54

    Google Scholar 

  • Crompton B, Thomason JC, McLachlan A (2003) Mating in a viscous universe: the race is to the agile, not to the swift. Proc R Soc Lond B 270:1991–1995

    Article  PubMed  Google Scholar 

  • Daniel TL, Combes SA (2002) Flexible wings and fins: bending by inertial or fluid-dynamic forces? Integr Comp Biol 42:1044–1049

    Google Scholar 

  • David CT (1978) The relationship between body angle and flight speed in free flying Drosophila. Physiol Entomol 3:191–195

    Google Scholar 

  • De Vries O (1983) On the theory of the horizontal-axis wind turbine. Annu Rev Fluid Mech 15:77–96

    Article  Google Scholar 

  • DeLaurier JD (1993) An aerodynamic model for flapping-wing flight. Aeronaut J 1993:125–130

    Google Scholar 

  • Dickinson MH (1996) Unsteady mechanisms of force generation in aquatic and aerial locomotion. Am Zool 36:537–554

    Google Scholar 

  • Dickinson MH, Lehmann F-O, Götz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182:173–189

    CAS  PubMed  Google Scholar 

  • Dickinson MH (1994) The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J Exp Biol 192:179–206

    PubMed  Google Scholar 

  • Dickinson MH, Götz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64

    Google Scholar 

  • Dickinson MH, Götz KG (1996) The wake dynamics and flight forces of the fruit fly, Drosophila melanogaster. J Exp Biol 199:2085–2104

    PubMed  Google Scholar 

  • Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960

    CAS  PubMed  Google Scholar 

  • Dixon CJ, Theisen JG, Scuggs RM (1973) Theoretical and experimental investigations of vortex-lift control by spanwise blowing. Experimental Research 1: LG73ER-0169

    Google Scholar 

  • Dudley R (2002) Mechanisms and implications of animal flight maneuverability. Integr Comp Biol 42:135–140

    Google Scholar 

  • Dudley R, Ellington CP (1990a) Mechanics of forward flight in bumblebees. I. Kinematics and morphology. J Exp Biol 148:19–52

    Google Scholar 

  • Dudley R, Ellington CP (1990b) Mechanics of forward flight in bumblebees. II. Quasi-steady lift and power requirements. J Exp Biol 148:53–88

    Google Scholar 

  • Edwards RH, Cheng HK (1982) The separation vortex in the Weis-Fogh circulation-generation mechanism. J Fluid Mech 120:463–473

    Google Scholar 

  • Egelhaaf M (1989) Visual afferences to flight steering muscles controlling optomotor responses of the fly. J Comp Physiol A 165:719–730

    CAS  PubMed  Google Scholar 

  • Ellington CP (1975) Non-steady-state aerodynamics of the flight of Encarsia formosa. In: Wu TY (ed) Symposium on swimming and flying in nature 2. Proceedings of the second half of the symposium on swimming and flying in nature. Pasadena, Calif., pp 729–762

  • Ellington CP (1980) Vortices and hovering flight. In: Nachtigall W (ed) Instationäre Effekte an schwingenden Flügeln. Steiner, Wiesbaden, pp 64–101

  • Ellington CP (1984a) The aerodynamics of insect flight. II. Morphological parameters. Philos Trans R Soc Lond B 305:17–40

    Google Scholar 

  • Ellington CP (1984b) The aerodynamics of insect flight. III. Kinematics. Philos Trans R Soc Lond B 305:41–78

    Google Scholar 

  • Ellington CP (1984c) The aerodynamics of insect flight. IV. Aerodynamic mechanisms. Philos Trans R Soc Lond B 305:79–113

    Google Scholar 

  • Ellington CP (1984d) The aerodynamics of insect flight. V. A vortex theory. Philos Trans R Soc Lond B 305:115–144

    Google Scholar 

  • Ellington CP (1984e) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Lond B 305:1–15

    Google Scholar 

  • Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202:3439–3448

    PubMed  Google Scholar 

  • Ellington CP, Berg C van den, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  CAS  Google Scholar 

  • Ennos AR (1988a) The importance of torsion in the design of insect wings. J Exp Biol 140:137–160

    Google Scholar 

  • Ennos AR (1988b) The inertial cause of wing rotation in Diptera. J Exp Biol 140:161–169

    Google Scholar 

  • Ennos AR (1989) The kinematics and aerodynamics of the free flight of some Diptera. J Exp Biol 142:49–85

    Google Scholar 

  • Farren WS (1935) The reaction on a wing whose angle of incidence is changing rapidly. Rep Memo Aeronaut Res Commun 1561

  • Flick KC, Tu MS, Daniel TL (2001) Flight control by steering muscles in Manduca sexta. Am Zool 41:1445

    Google Scholar 

  • Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 300:495–498

    Article  CAS  PubMed  Google Scholar 

  • Fung YC (1993) An introduction to the theory of aeroelasticity. Dover, New York

  • Gleason M, Roskam J (1972) Preliminary results of some experiments with a vortex augmented wing. In: National Business Aircraft meeting, SAE 720321. Wichita, Kans.

  • Götz KG (1968) Flight control in Drosophila by visual perception of motion. Biol Cybernetics 4:199–208

    Google Scholar 

  • Götz KG (1983) Bewegungssehen and Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA report 2. Fischer, Stuttgart, pp 21–34

  • Götz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J Exp Biol 128:35–46

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybernetics 35:101–112

    Google Scholar 

  • Grodnitsky DL, Morozov PP (1993) Vortex formation during tethered flight of functionally and morphologically two-winged insects, including evolutionary considerations on insect flight. J Exp Biol 182:11–40

    Google Scholar 

  • Ham ND, Garelick MS (1968) Dynamic stall considerations in helicopter rotors. J Am Helicopter Soc 13:49–55

    Google Scholar 

  • Hausen K, Wehrhahn C (1990) Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions. J Neurosci 10:351–360

    CAS  PubMed  Google Scholar 

  • Heide G (1971) Die Funktion der nicht-fibrillären Flugmuskeln bei der Schmeißfliege Calliphora. II. Muskuläre Mechanismen der Flugssteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76:99–137

    Google Scholar 

  • Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybernetics 20:99–112

    Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in Diptera In: Nachtigall W (ed) BIONA report 2. Fischer, Stuttgart, pp 35–52

    Google Scholar 

  • Heide G, Götz KG (1996) Optomotor control of course and altitude in Drosophila is achieved by at least three pairs of flight steering muscles. J Exp Biol 199:1711–1726

    PubMed  Google Scholar 

  • Heisenberg M, Wolf R (1988) Reafferent control of optomotor yaw torque in Drosophila melanogaster. J Comp Physiol A 163:373–388

    Google Scholar 

  • Heisenberg M, Wolf R (1993) The sensory-motor link in motion-dependent flight control of flies In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 265–283

  • Hoff W (1919) Der Flug der Insekten und Vögel. Naturwissenschaften 10:159–162

    Google Scholar 

  • Hollick FSJ (1940) The flight of the dipterous fly Muscina sabulans Fallén. Philos Trans R Soc Lond B 230:357–390

    Google Scholar 

  • Holst E von, Küchemann D (1941) Biologische und aerodynamische Probleme des Tierflugs. Naturwissenschaften 29:348–362

    Google Scholar 

  • Houghton EL, Carpenter PW (2003) Aerodynamics for engineering students. Butterworth-Heinemann, Oxford

  • Ivanov VD (1990) A comparative analysis of flight aerodynamics of caddis flies (Insecta: Trichoptera). Zool Zh 69:46–60

    Google Scholar 

  • Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Philos Trans R Soc Lond B 239:511–552

    Google Scholar 

  • Kamakoti R, Berg M, Ljungqvist D, Shyy W (2000) A computational study for biological flapping wing flight. Trans Aeronaut Astronaut Soc Rep China 32:265–279

    Google Scholar 

  • Kamakoti R, Lian Y, Regisford S, Kurdila A, Shyy W (2002) Computational aeroelasticity using a pressure-based solver. CMES 3:773–789

    Google Scholar 

  • Katz J, Plotkin A (2002) Low-speed aerodynamics. Cambridge University Press, Cambridge

  • Kliss M, Somps C, Luttges MW (1989) Stable vortex structures: a flat plate model of dragonfly hovering. J Theor Biol 136:209–228

    Google Scholar 

  • Kokshaysky NV (1979) Tracing the wake of a flying bird. Nature 279:146–148

    Google Scholar 

  • Krall KM, Haight CH (1972) Wind tunnel tests of a trapped vortex-high lift airfoil. Advanced Technology Center, USA

  • Kramer M (1932) Die Zunahme des Maximalauftriebes von Tragflügeln bei plötzlicher Anstellwinkelvergrösserung (Böeneffect). Z Flugtech Motorluftschiff 82:223–240

    Google Scholar 

  • Kruppa EW (1977) A wind tunnel investigation of the Kasper vortex concept. Paper 115704, American Institute of Aeronautics and Astronautics (AIAA), Washington, D.C.

  • Kuethe AM, Chow C-Y (1986) Foundations of aerodynamics. Wiley, New York

  • Lan CE (1979) The unsteady quasi-vortex-lattice method with applications to animal propulsion. J Fluid Mech 93:747–765

    Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). J Comp Physiol A 89:331–357

    Google Scholar 

  • Lehmann F-O (1994) Aerodynamische, kinematische und electrophysiologische Aspekte der Flugkrafterzeugung und Flugkraftsteuerung bei der Taufliege Drosophila melanogaster. Thesis, Max-Planck-Institute for Biological Cybernetics, University of Tübingen, Germany

  • Lehmann F-O (2000) Flattern für Flugkräfte. Naturwiss Rundschau 623:223–230

    Google Scholar 

  • Lehmann F-O, Dickinson MH (1997) The changes in power requirements and muscle efficiency during elevated force production in the fruit fly, Drosophila melanogaster. J Exp Biol 200:1133–1143

    PubMed  Google Scholar 

  • Lehmann F-O, Dickinson MH (1998) The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol 201:385–401

    PubMed  Google Scholar 

  • Lehmann F-O, Dickinson MH (2001) The production of elevated flight force compromises flight stability in the fruit fly Drosophila. J Exp Biol 204:627–635

    CAS  PubMed  Google Scholar 

  • Lighthill MJ (1973) On the Weis-Fogh mechanism of lift generation. J Fluid Mech 60:1–17

    Google Scholar 

  • Liu H (2002) Computational biological fluid dynamics: digitizing and visualizing animal swimming and flying. Integr Comp Biol 42:1050–1059

    Google Scholar 

  • Liu H, Ellington CP, Kawachi K, Berg C van den, Willmott AP (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201:461–477

    PubMed  Google Scholar 

  • Marden J (1987) Maximum lift production during take-off in flying animals. J Exp Biol 130:235–258

    Google Scholar 

  • Maxworthy T (1979) Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. 1. Dynamics of the ‘fling’. J Fluid Mech 93:47–63

    Google Scholar 

  • McCroskey WJ, Carr LW, McAlister KW (1976) Dynamic stall experiments on oscillating airfoils. AIAA J 14:57–63

    Google Scholar 

  • Milne-Thomson LM (1966) Theoretical aerodynamics. Macmillan, New York

  • Mises R von (1959) Theory of flight. Dover, New York

  • Munk MM (1925) Note on the air forces on a wing caused by pitching. NACA Tech Notes 217:1–6

    Google Scholar 

  • Nachtigall W (1977) Die aerodynamische Polare des Tipula-Flügels und eine Einrichtung zur halbautomatischen Polarenaufbahme. In: Nachtigall W (ed) Physiology of movement: biomechanics. Fischer, Stuttgart, pp 347–352

  • Nachtigall W (1979) Rasche Richtungsänderungen und Torsionen schwingender Fliegenflügel und Hypothesen über zugeordnete instationäre Strömungseffekte. J Comp Physiol A 133:351–355

    Google Scholar 

  • Newman BG, Savage SB, Schouella D (1977) Model tests on a wing section of an Aeschna dragonfly scale effects in animal locomotion. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, London, pp 445–477

  • Norberg RA (1975a) Hovering flight of the dragonfly Aeschna juncea L. In: Wu TY, Brokaw CJ, Brennen C (eds) Kinematics and aerodynamics, vol 2. Plenum, New York, pp 763–781

  • Norberg UM (1975b) Hovering flight in the pied flycatcher (Ficedula hypoleuca). In: Wu TY, Brokaw CJ, Bremen C (eds) Swimming and flying in nature, vol 2. Plenum, New York, pp 869–881

  • Norberg UM (1976) Aerodynamics of hovering flight in the long-eared bat Plecotus auritus. J Exp Biol 28:221–245

    Google Scholar 

  • Norberg UML (2002) Structure, form, and function of flight in engineering and the living world. J Morphol 252:52–81

    Article  PubMed  Google Scholar 

  • Okamoto M, Yasuda K, Azuma A (1996) Aerodynamic characteristics of the wings and body of a dragonfly. J Exp Biol 199:281–294

    PubMed  Google Scholar 

  • Osborne MFM (1951) Aerodynamics of flapping flight with application to insects. J Exp Biol 28:221–245

    PubMed  Google Scholar 

  • Polhamus EC (1971) Predictions of vortex-lift characteristics by a leading-edge suction analogy. J Aircraft 8:193–199

    Google Scholar 

  • Ramamurti R, Sandberg WC (2001) Computational study of 3-D flapping foil flows. Paper AIAA 2001-0605, AIAA, Washington, D.C.

  • Rayner JMV (1979) A vortex theory of animal flight. 1. The vortex wake of a hovering animal. J Fluid Mech 91:697–730

    Google Scholar 

  • Rayner JMV, Jones G, Thomas A (1986) Vortex flow visualizations reveal change in upstroke function with flight speed in bats. Nature 321:162–164

    Google Scholar 

  • Reavis MA, Luttges MW (1988) Aerodynamic forces produced by a dragonfly. AIAA paper 88-0330, AIAA, Washington, D.C.

  • Rossow VJ (1978) Lift enhancement by an externally trapped vortex. J Aircraft 15:618–625

    Google Scholar 

  • Saharon D, Luttges MW (1987) Three-dimensional flow produced by a pitching-plunging model dragonfly wing. AIAA paper 87-0121, AIAA, Washington, D.C.

  • Sane S, Dickinson M (2001) The control of flight force by a flapping wing: lift and drag production. J Exp Biol 204:2607–2626

    CAS  PubMed  Google Scholar 

  • Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096

    PubMed  Google Scholar 

  • Savage SB, Newman BG, Wong DT-M (1979) The role of vortices and unsteady effects during the hovering flight of dragonflies. J Exp Biol 83:59–77

    Google Scholar 

  • Schenato L, Deng X, Sastry S (2001) Flight control system for a micromechanical flying insect: architecture and implementation. In: IEEE international conference on robotics and automation, Seoul, Korea

  • Schlichting H (1979) Boundary-layer theory. McGraw-Hill, New York

  • Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aeronaut Sci 35:455–505

    Article  Google Scholar 

  • Silcox RJ, Szware WJ (1974) Wind-tunnel dynamic analysis of an oscillating airfoil. AIAA paper 74-259, AIAA, Washington D.C.

  • Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping-wing technology. AIAA J 34:1348–1355

    Google Scholar 

  • Spedding GR (1986) The wake of a jackdaw (Corvus mondela) in slow flight. J Exp Biol 125:287–307

    Google Scholar 

  • Spedding GR, Maxworthy T (1986) The generation of circulation and lift in a rigid two-dimensional fling. J Fluid Mech 165:247–272

    Google Scholar 

  • Spedding GR, Rayner JMV, Pennycuick CJ (1984) Momentum and energy in the wake of a pigeon (Columba livia) in slow flight. J Exp Biol 111:81–102

    Google Scholar 

  • Srygley RB, Dudley R (1993) Correlations of the position of center of body mass with butterfly escape tactics. J Exp Biol 174:155–166

    Google Scholar 

  • Srygley RB, Thomas ALR (2002) Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420:660–6604

    Article  CAS  PubMed  Google Scholar 

  • Stepniewski WZ, Keys CN (1984) Rotary-wing aerodynamics. Dover, New York

  • Sun M, Hamdani H (2001) A study on the mechanism of high-lift generation by an airfoil in unsteady motion at low Reynolds Number. Acta Mech Sin (Eng Ser) 17:97–114

    Google Scholar 

  • Sun M, Tang J (2002) Lift and power requirements of hovering flight in Drosophila virilis. J Exp Biol 205:2413–2427

    PubMed  Google Scholar 

  • Sunada S (1993) Fundamental analysis of three-dimensional ‘near fling’. J Exp Biol 183:217–248

    Google Scholar 

  • Sunada S, Kawachi K, Watanabe I, Azuma A (1993) Fundamental analysis of three-dimensional “near fling”. J Exp Biol 183:217–248

    Google Scholar 

  • Sunada S, Takashima H, Hattori T, Yasuda K, Kawachi K (2002) Fluid-dynamic characteristics of a bristled wing. J Exp Biol:2737–2744

    Google Scholar 

  • Taylor GK (2001) Mechanics and aerodynamics of insect flight control. Biol Rev 76:449–471

    CAS  PubMed  Google Scholar 

  • Thom A, Swart P (1940) The forces on an aerofoil at very low speeds. J R Aeronaut Soc 44:761–770

    Google Scholar 

  • Tu MS, Dickinson MH (1996) The control of wing kinematics by two steering muscles of the blowfly, Calliphora vicina. J Comp Physiol A 178:813–830

    CAS  PubMed  Google Scholar 

  • Usherwood JR, Ellington CP (2002a) The aerodynamic of revolving wings. I. Model hawkmoth wings. J Exp Biol 205:1547–1564

    PubMed  Google Scholar 

  • Usherwood JR, Ellington CP (2002b) The aerodynamics of revolving wings. II. Propeller force coefficients from mayfly to quail. J Exp Biol 205:1565–1576

    PubMed  Google Scholar 

  • Vest MS, Katz J (1996) Unsteady aerodynamic model of flapping wings. AIAA J 34:1435–1440

    Google Scholar 

  • Vogel S (1967a) Flight in Drosophila. II. Variations in stroke parameters and wing contour. J Exp Biol 46:383–392

    CAS  PubMed  Google Scholar 

  • Vogel S (1967b) Flight in Drosophila. III. Aerodynamic characteristics of fly wings and wing models. J Exp Biol 46:431–443

    Google Scholar 

  • Vogel S (1994) Life in moving fluids. Princeton University Press, Princeton, N.J.

  • Wagner H (1925) Über die Entstehung des dynamischen Auftriebes von Tragflügeln. Z Angew Math Mech 5:17–35

    Google Scholar 

  • Wagner H (1985) Aspects of the free flight behaviour of houseflies (Musca domestica). In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Hamburg, pp 223–232

  • Wakeling JM, Ellington CP (1997a) Dragonfly flight. II. Velocities, accelerations, and kinematics of flapping flight. J Exp Biol 200:557–582

    PubMed  Google Scholar 

  • Wakeling JM, Ellington CP (1997b) Dragonfly flight. III. Lift and power requirements. J Exp Biol 200:583–600

    PubMed  Google Scholar 

  • Walker GT (1925) The flapping flight of birds. J R Aeronaut Soc 29:590–594

    Google Scholar 

  • Walker JA (2002a) Functional morphology and virtual models: physical constraints on the design of oscillating wings, fins, legs and feet at intermediate Reynolds numbers. Integr Comp Biol 42:232–242

    Google Scholar 

  • Walker JA (2002b) Rotational lift: something different or more of the same? J Exp Biol 205:3783–3792

    PubMed  Google Scholar 

  • Walker JA, Westneat MW (2000) Mechanical performance of aquatic rowing and flying. Proc R Soc Lond B 267:1875–1881

    CAS  PubMed  Google Scholar 

  • Wang H, Zeng L, Liu H, Chunyong Y (2003) Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. J Exp Biol 206:745–757

    Article  PubMed  Google Scholar 

  • Wang ZJ (2000a) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219

    Article  PubMed  Google Scholar 

  • Wang ZJ (2000b) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341

    Article  Google Scholar 

  • Wang ZJ, Birch JM, Dickinson MH (2003) Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computation vs robotic wing experiments. J Exp Biol 207:449–460

    Article  Google Scholar 

  • Wehrhahn C, Poggio T, Bülthoff H (1982) Tracking and chasing in house flies (Musca): an analysis of 3-D flight trajectories. Biol Cybernetics 45:123–130

    Google Scholar 

  • Weis-Fogh T (1956) Biology and physics of locust flight. II. Flight performance of the desert locust (Schistocera gregaria). Philos Trans R Soc Lond B 239:459–510

    Google Scholar 

  • Weis-Fogh T (1972) Energetics of hovering flight in hummingbirds and in Drosophila. J Exp Biol 56:79–104

    Google Scholar 

  • Weis-Fogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230

    Google Scholar 

  • Weis-Fogh T (1974) In: Wu TY, Brokaw CJ, Brennen C (eds) Swimming and flying in nature, vol 2. Plenum, New York, pp 729–762

  • Weis-Fogh T (1975) Unusual mechanisms for the generation of lift in flying animals. Sci Am 233:80–87

    Google Scholar 

  • Willmott AP (1995) The mechanics of hawkmoth flight. Thesis, Cambridge University, Cambridge

  • Willmott AP, Ellington CP (1997a) Measuring the angle of attack of beating insect wings: robust three-dimensional reconstruction from two-dimensional images. J Exp Biol 200:2693–2704

    PubMed  Google Scholar 

  • Willmott AP, Ellington CP (1997b) The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. J Exp Biol 200:2705–2722

    PubMed  Google Scholar 

  • Willmott AP, Ellington CP, Thomas ALR (1997) Flow visualization and unsteady aerodynamic mechanisms in the flight of the hawkmoth Manduca sexta. Philos Trans R Soc Lond B 352:303–316

    Article  Google Scholar 

  • Wootton RJ, Newman DJS (1979) Whitefly have the highest contradiction frequencies yet recorded in non-fibrillar flight muscles. Nature 280:402–403

    Google Scholar 

  • Wu JZ, Vakili AD, Wu JM (1991) Review of the physics of enhancing vortex lift by unsteady excitation. Prog Aerospace Sci 28:73–131

    Article  Google Scholar 

  • Zanker JM (1990a) The wing beat of Drosophila melanogaster. I. Kinematics. Philos Trans R Soc Lond B 327:1–18

    Google Scholar 

  • Zanker JM (1990b) The wing beat of Drosophila melanogaster. III. Control. Philos Trans R Soc Lond B 327:45–64

    Google Scholar 

  • Zanker JM, Götz KG (1990) The wing beat of Drosophila melanogaster. II. Dynamics. Philos Trans R Soc Lond B 327:19–44

    Google Scholar 

  • Zbikowski R (2002) On aerodynamic modeling of an insect-like flapping wing in hover for micro air vehicles. Philos Trans R Soc Lond A 360:273–290

    Article  Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: the free flight behavior of male Bibionidae (Diptera). J Comp Physiol A 150:395–412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz-Olaf Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, FO. The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91, 101–122 (2004). https://doi.org/10.1007/s00114-004-0502-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0502-3

Keywords

Navigation