Skip to main content

Advertisement

Log in

Funktionelle Rehabilitation nach Oberschenkelamputation

Schaftprothese oder Endo-Exo-Prothese?

Functional rehabilitation after transfemoral amputation

Shaft prosthesis or endo-exo prosthesis?

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Nach einer transfemoralen Amputation sind sicheres Stehen und die bipedale Fortbewegung nur noch mithilfe einer Prothese möglich. Diese kann entweder „klassisch“ über einen den Stumpf umfassenden Schaft oder direkt über einen im Knochen verankerten und durch die Haut ausgeleiteten Prothesenstiel (Endo-Exo-Prothese, EEP) angekoppelt werden.

Ziel der Arbeit

Eine umfassende Ganganalyse sollte es erlauben, die mit einer EEP antizipierten Vorteile für das Gangbild und die individuelle Mobilität zu objektivieren.

Material und Methoden

Bei 2 Patienten wurden jeweils vor und 6 Monate (Patient 1) bzw. 11 und 20 Monate (Patient 2) nach dem Wechsel von einer Schaftprothese auf die EEP umfassende Ganganalysen durchgeführt. Diese erfolgten im Gait Real-Time Analysis Interactive Lab (GRAIL), einem vollinstrumentiertem Ganglabor, das Analysen unter alltagsrelevanten Bedingungen durch die Nutzung von virtueller Realität erlaubt.

Ergebnisse

In beiden Fällen bestätigte die Ganganalyse die mit einer EEP assoziierten Vorteile für die Kraftübertragung auf die Prothese und die damit einhergehende Verbesserung der Gangsymmetrie.

Abstract

Background

After transfemoral amputation a prosthesis is required to restore autonomous standing and bipedal locomotion. Attachment of the prosthesis can be achieved either classically via socket suspension with a shaft in the stump or directly via implantation of an intramedullary transcutaneous femoral prosthesis (osseointegrated prosthesis).

Aim

A fully instrumented gait analysis should enable objectification of the anticipated advantages of the EEP with respect to the gait pattern and individual mobility.

Material and methods

In two patients with a unilateral transfemoral amputation a comprehensive gait analysis was carried out prior to and 6 months (patient 1) or 11 and 20 months (patient 2) after switching from a socket prosthesis to an EEP. This was carried out in the Gait Realtime Analysis Interactive Lab (GRAIL), a fully instrumented gait laboratory with virtual reality and enables assessment close to the conditions of daily life.

Results

In both cases the gait analysis confirmed the advantages associated with an EEP for the transmission of force to the prosthesis and the accompanying improvement in gait symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Al Muderis M, Lu W, Li JJ (2017) Osseointegrated prosthetic limb for the treatment of lower limb amputations : experience and outcomes. Unfallchirurg 120:306–311

    Article  Google Scholar 

  2. Aschoff HH (2017) Transcutaneous osseointegration (part 2). Unfallchirurg 120:366

    Article  Google Scholar 

  3. Aschoff HH (2017) Transcutaneous osseointegration after limb amputation: a review over 27 years. Unfallchirurg 120:278–284

    Article  Google Scholar 

  4. Aschoff HH, Clausen A, Tsoumpris K et al (2011) Implantation of the endo-exo femur prosthesis to improve the mobility of amputees. Oper Orthop Traumatol 23:462–472

    Article  CAS  Google Scholar 

  5. Aschoff HH, Juhnke DL (2016) Endo-exo prostheses : osseointegrated percutaneously channeled implants for rehabilitation after limb amputation. Unfallchirurg 119:421–427

    Article  Google Scholar 

  6. Aschoff HH, Juhnke DL (2012) Evaluation of 10 years experience with endo-exo femur prostheses—background, data and results. Z Orthop Unfall 150:607–614

    CAS  PubMed  Google Scholar 

  7. Aschoff HH, Kennon RE, Keggi JM et al (2010) Transcutaneous, distal femoral, intramedullary attachment for above-the-knee prostheses: an endo-exo device. J Bone Joint Surg Am 92(2):180–186

    Article  Google Scholar 

  8. Atallah R, Leijendekkers RA, Hoogeboom TJ et al (2018) Complications of bone-anchored prostheses for individuals with an extremity amputation: a systematic review. PLoS ONE 13:e201821

    Article  Google Scholar 

  9. Blumentritt S (2017) Function of prosthesis components in lower limb amputees with bone-anchored percutaneous implants : biomechanical aspects. Unfallchirurg 120:385–394

    Article  CAS  Google Scholar 

  10. Branemark R, Berlin O, Hagberg K et al (2014) A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J 96-B:106–113

    Article  CAS  Google Scholar 

  11. Branemark RP, Hagberg K, Kulbacka-Ortiz K et al (2019) Osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective five-year follow-up of patient-reported outcomes and complications. J Am Acad Orthop Surg 27:e743–e751

    Article  Google Scholar 

  12. Ettema S, Kal E, Houdijk H (2021) General estimates of the energy cost of walking in people with different levels and causes of lower-limb amputation: a systematic review and meta-analysis. Prosthet Orthot Int 45:417–427

    Article  Google Scholar 

  13. Feldhege F, Richter K, Bruhn S et al (2021) MATLAB-based tools for automated processing of motion tracking data provided by the GRAIL. Gait Posture 90:422–426. https://doi.org/10.1016/j.gaitpost.2021.09.17

    Article  PubMed  Google Scholar 

  14. Gholizadeh H, Abu Osman NA, Eshraghi A et al (2014) Transfemoral prosthesis suspension systems: a systematic review of the literature. Am J Phys Med Rehabil 93:809–823

    Article  Google Scholar 

  15. Götz-Neumann K (2006) Gehen verstehen: Ganganalyse in der Physiotherapie. Thieme, (18 Tabellen)

    Google Scholar 

  16. Hagberg K, Branemark R (2001) Consequences of non-vascular trans-femoral amputation: a survey of quality of life, prosthetic use and problems. Prosthet Orthot Int 25:186–194

    Article  CAS  Google Scholar 

  17. Hagberg K, Branemark R (2009) One hundred patients treated with osseointegrated transfemoral amputation prostheses—rehabilitation perspective. J Rehabil Res Dev 46:331–344

    Article  Google Scholar 

  18. Hagberg K, Branemark R, Gunterberg B et al (2008) Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2‑year follow-up. Prosthet Orthot Int 32:29–41

    Article  Google Scholar 

  19. Hagberg K, Ghassemi Jahani SA, Kulbacka-Ortiz K et al (2020) A 15-year follow-up of transfemoral amputees with bone-anchored transcutaneous prostheses. Bone Joint J 102:55–63

    Article  Google Scholar 

  20. Heitzmann DWW, Leboucher J, Block J et al (2020) The influence of hip muscle strength on gait in individuals with a unilateral transfemoral amputation. PLoS ONE 15:e238093

    Article  CAS  Google Scholar 

  21. Hoellwarth JS, Tetsworth K, Rozbruch SR et al (2020) Osseointegration for amputees: current implants, techniques, and future directions. JBJS Rev 8:e43

    Article  Google Scholar 

  22. Hoffmeister T, Schwarze F, Aschoff HH (2017) The endo-exo prosthesis treatment concept : improvement in quality of life after limb amputation. Unfallchirurg 120:371–377

    Article  CAS  Google Scholar 

  23. Juhnke DL, Beck JP, Jeyapalina S et al (2015) Fifteen years of experience with integral-leg-prosthesis: cohort study of artificial limb attachment system. J Rehabil Res Dev 52:407–420

    Article  Google Scholar 

  24. Leijendekkers RA, van Hinte G, Frolke JP et al (2017) Comparison of bone-anchored prostheses and socket prostheses for patients with a lower extremity amputation: a systematic review. Disabil Rehabil 39:1045–1058

    Article  Google Scholar 

  25. Li Y, Branemark R (2017) Osseointegrated prostheses for rehabilitation following amputation : the pioneering Swedish model. Unfallchirurg 120:285–292

    Article  Google Scholar 

  26. Mengelkoch LJ, Kahle JT, Highsmith MJ (2017) Energy costs and performance of transfemoral amputees and non-amputees during walking and running: a pilot study. Prosthet Orthot Int 41:484–491

    Article  Google Scholar 

  27. Mittlmeier T, Richter K, Krause K et al (2020) Nach Endo-Exo-Prothetik: neue Wege in der klinischen Ganganalyse. Orthopädie Rheuma 23:28–33

    Article  Google Scholar 

  28. Motek BV (2017) HBM 2 Referentmanual, Amsterdam

  29. Örgel M, Elareibi M, Graulich T et al (2021) Osseoperception in transcutaneous osseointegrated prosthetic systems (TOPS) after transfemoral amputation: a prospective study. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04099-1

    Article  PubMed  Google Scholar 

  30. Örgel M, Petri M, Ranker A et al (2021) Management, outcome, and novel classification system of periprosthetic fractures in patients with transcutaneous osseointegrated prosthetic systems (TOPS)—a retrospective cohort analysis. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03826-y

    Article  PubMed  Google Scholar 

  31. Örgel M, Ranker A, Harb A et al (2021) Transcutaneous osseointegrated prosthetic systems after major amputation of the lower extremity : a retrospective 3‑year analysis. Orthopade 50:4–13

    Article  Google Scholar 

  32. Rutkowska-Kucharska A, Kowal M, Winiarski S (2018) Relationship between asymmetry of gait and muscle torque in patients after unilateral transfemoral amputation. Appl Bionics Biomech 2018:5190816

    PubMed  PubMed Central  Google Scholar 

  33. Tranberg R, Zügner R, Kärrholm J (2011) Improvements in hip- and pelvic motion for patients with osseointegrated trans-femoral prostheses. Gait Posture 33:165–168

    Article  CAS  Google Scholar 

  34. Van de Meent H, Hopman MT, Frölke JP (2013) Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses. Arch Phys Med Rehabil 94:2174–2178

    Article  Google Scholar 

  35. van den Bogert AJ, Geijtenbeek T, Even-Zohar O et al (2013) A real-time system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput 51:1069–1077

    Article  Google Scholar 

Download references

Danksagung

Die Anschaffung des GRAIL wurde durch die Deutsche Forschungsgemeinschaft (Inst 264/137-1) gefördert. Die dargestellten Untersuchungen erfolgten im Rahmen eines vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts (13GW0197F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mittlmeier.

Ethics declarations

Interessenkonflikt

K. Richter, K. Krause, R. Rotter,D.-C. Fischer, H.-H. Aschoff und T. Mittlmeier geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen oder an menschlichem Gewebe wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Additional information

Redaktion

Thomas Mittlmeier, Rostock

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, K., Krause, K., Rotter, R. et al. Funktionelle Rehabilitation nach Oberschenkelamputation. Unfallchirurg 125, 266–274 (2022). https://doi.org/10.1007/s00113-022-01148-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01148-1

Schlüsselwörter

Keywords

Navigation