Skip to main content
Log in

Digitaler OP

Digital OR

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Im orthopädisch-unfallchirurgischen OP greifen zahlreiche Prozesse ineinander. Der technische Fortschritt insbesondere im Bereich der Digitalisierung verändert den operativen Alltag zunehmend.

Fragestellung

In diesem Beitrag sollen diesbezügliche Möglichkeiten, aber auch Limitationen aufgezeigt werden.

Material und Methoden

Dieser Beitrag gibt anhand der aktuellen Literatur Einblicke in Innovationen in den Bereichen Digitalisierung von OP-Geräten, Hybrid-OP, Machine-2-Machine-Vernetzung, Managementsysteme zur perioperativen Effizienzsteigerung, 3D-Druck-Technologie und Robotik.

Ergebnisse

Die technischen Möglichkeiten zum Einsatz digitaler Anwendungen im operativen Umfeld nehmen rasch zu. Hierbei spielt die enge Zusammenarbeit mit der Industrie eine Rolle. Techniken aus Automobil‑, Spiele- und Mobilfunkindustrie werden übernommen.

Schlussfolgerung

Durch digitale Technisierung im OP können Behandlungsqualität, Patienten- und Mitarbeitersicherheit sowie Kosteneffizienz verbessert werden. Limitationen sind jedoch weiterhin die Vernetzung von Geräten untereinander, die Implementierung von Innovationen in bestehende Strukturen sowie die teils hohen Anschaffungskosten.

Abstract

Background

Numerous processes are involved in the orthopedic and trauma surgery operating room (OR). Technical progress, particularly in the area of digitalization, is increasingly changing routine surgical procedures.

Objective

This article highlights the possibilities and also limitations regarding this matter.

Material and methods

Based on the current literature this article provides insights into innovations in the areas of digitalization of surgical devices, hybrid OR, machine-2-machine networking, management systems for perioperative efficiency improvement, 3D printing technology and robotics.

Results

The technical possibilities for the use of digital applications in the surgical environment are rapidly increasing. Close cooperation with industrial partners is important in this context. Technologies from the automotive, gaming and mobile phone industries are being adopted.

Conclusion

Digital technology in the OR can improve treatment quality, patient and staff safety and cost efficiency; however, the networking of devices, implementation of innovations in existing structures and the sometimes high acquisition costs are still limiting factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Altpeter B (2017) E‑Health als Bestandteil ganzheitlicher Therapieoptimierung. Diabetologe 13:29–37

    Article  Google Scholar 

  2. Auer C, Hollenstein N, Reumann M (2019) Künstliche Intelligenz im Gesundheitswesen. In: Gesundheit digital. Springer, Berlin, Heidelberg, S 33–46

    Chapter  Google Scholar 

  3. Balicki M, Kyne S, Toporek G et al (2020) Design and control of an image guided robot for spine surgery in a hybrid OR. Int J Med Robot 16(4):e2108. https://doi.org/10.1002/rcs.2108

    Article  PubMed  Google Scholar 

  4. Bockhacker M, Syrek H, von Elstermann M et al (2020) Evaluating usability of a touchless image viewer in the operating room. Appl Clin Inform 11:88–94

    Article  PubMed  PubMed Central  Google Scholar 

  5. Franke J, von Recum J, Suda AJ et al (2012) Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am 94:1386–1390

    Article  PubMed  Google Scholar 

  6. Gehring H, Rackebrandt K, Imhoff M (2018) E‑Health and reality—what are we facing in patient care? Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 61:252–262

    Article  CAS  PubMed  Google Scholar 

  7. Gillmann B, Hoppe T, Riecke T, Weddeling B (2018) 20 Milliarden bis 2020 – Das ist die KI-Strategie der EU

    Google Scholar 

  8. Hartl R, Lam KS, Wang J et al (2013) Worldwide survey on the use of navigation in spine surgery. World Neurosurg 79:162–172

    Article  PubMed  Google Scholar 

  9. Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28:S54–61

    PubMed  Google Scholar 

  10. Horas K, Hoffmann R, Faulenbach M et al (2019) Advances in the pre-operative planning of revision trauma surgery using 3D printing technology. J Orthop Trauma. https://doi.org/10.1097/BOT.0000000000001708

    Article  Google Scholar 

  11. Janß A, Benzko J, Merz P et al (2014) Development of medical device UI-profiles for reliable and safe human-machine-interaction in the integrated operating room of the future. Adv Hum Asp Healthcare 3:274

    Google Scholar 

  12. Keil H, Aytac S, Grutzner PA et al (2019) Intraoperative imaging in pelvic surgery. Z Orthop Unfall 157:367–377

    Article  PubMed  Google Scholar 

  13. Lai TC, Fleming JJ (2018) Minimally invasive plate osteosynthesis for distal tibia fractures. Clin Podiatr Med Surg 35:223–232

    Article  PubMed  Google Scholar 

  14. Laverdiere C, Corban J, Khoury J et al (2019) Augmented reality in orthopaedics: a systematic review and a window on future possibilities. Bone Joint J 101:1479–1488

    Article  PubMed  Google Scholar 

  15. Liodakis E, Bruns N, Macke C et al (2019) 3D-printed template-assisted reduction of long bone fractures. Unfallchirurg 122:286–292

    Article  CAS  PubMed  Google Scholar 

  16. Liu HS, Duan SJ, Liu SD et al (2018) Robot-assisted percutaneous screw placement combined with pelvic internal fixator for minimally invasive treatment of unstable pelvic ring fractures. Int J Med Robot 14:e1927

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luxenhofer M, Beisemann N, Schnetzke M et al (2020) Diagnostic accuracy of intraoperative CT-imaging in complex articular fractures—a cadaveric study. Sci Rep 10:4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Omar M, Zeller AN, Gellrich NC et al (2017) Application of a customized 3D printed reduction aid after external fixation of the femur and tibia: technical note. Int J Med Robot. https://doi.org/10.1002/rcs.1803

    Article  PubMed  Google Scholar 

  19. Poduval M, Ghose A, Manchanda S et al (2020) Artificial intelligence and machine learning: a new disruptive force in orthopaedics. Indian J Orthop 54:109–122

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmitt-Sausen N (2019) Digitale Medizin: Ärzte müssen eingebunden werden. Dtsch Arztebl Int 116:A630–633

    Google Scholar 

  21. Schütz U, Beer M, Wild A, Oehler S, Kraus M (2016) Radiation protection during C‑arm based spine interventions in orthopedics and traumatology. OUP Orthop Unfallchir Prax 4:224–237

    Google Scholar 

  22. Shigekawa E, Fix M, Corbett G et al (2018) The current state of telehealth evidence: a rapid review. Health Aff 37:1975–1982

    Article  Google Scholar 

  23. Snijders T, van Gaalen SM, de Gast A (2017) Precision and accuracy of imageless navigation versus freehand implantation of total hip arthroplasty: a systematic review and meta-analysis. Int J Med Robot. https://doi.org/10.1002/rcs.1843

    Article  PubMed  Google Scholar 

  24. St. Mart StJP, de Steiger RN, Cuthbert A et al (2020) The three-year survivorship of robotically assisted versus non-robotically assisted unicompartmental knee arthroplasty. Bone Joint J 102:319–328

    Article  PubMed  Google Scholar 

  25. Swartman B, Frere D, Wei W et al (2017) 2D projection-based software application for mobile C‑arms optimises wire placement in the proximal femur—an experimental study. Injury 48:2068–2073

    Article  CAS  PubMed  Google Scholar 

  26. Swartman B, Frere D, Wei W et al (2018) Wire placement in the sustentaculum tali using a 2D projection-based software application for mobile C‑arms: cadaveric study. Foot Ankle Int. https://doi.org/10.1177/1071100717746618

    Article  PubMed  Google Scholar 

  27. Tørring B, Gittell JH, Laursen M et al (2019) Communication and relationship dynamics in surgical teams in the operating room: an ethnographic study. BMC Health Serv Res 19:528

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wasem JGM, Friedrich J (2019) Krankenhaus-Report 2019. Springer, Heidelberg

    Google Scholar 

  29. Weidert S, Andress S, Linhart C et al (2020) 3D printing method for next-day acetabular fracture surgery using a surface filtering pipeline: feasibility and 1‑year clinical results. Int J Comput Assist Radiol Surg 15:565–575

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weidert S, Andress S, Suero E et al (2019) 3D printing in orthopedic and trauma surgery education and training: possibilities and fields of application. Unfallchirurg 122:444–451

    Article  PubMed  Google Scholar 

  31. Wilhelm D, Kranzfelder M, Ostler D et al (2020) Digitalization in surgery: what surgeons currently think and know about it-results of an online survey. Chirurg 91:51–59

    Article  CAS  PubMed  Google Scholar 

  32. Zhao JX, Li C, Ren H et al (2020) Evolution and current applications of robot-assisted fracture reduction: a comprehensive review. Ann Biomed Eng 48:203–224

    Article  PubMed  Google Scholar 

  33. Siemens Healthcare GmbH (2018) Hybrid-OP rückt den Patienten in den Mittelpunkt. https://www.siemens-healthineers.com/de/news/mso-hsk-hybrid-or.html. Zugegriffen: 7.4.2020

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to B. Swartman.

Ethics declarations

Interessenkonflikt

B. Swartman, J. Franke, C. Schnurr, S. Märdian, C. Willy und D.A. Back geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

D.A. Back, Berlin

D. Pförringer München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swartman, B., Franke, J., Schnurr, C. et al. Digitaler OP. Unfallchirurg 123, 849–855 (2020). https://doi.org/10.1007/s00113-020-00886-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-020-00886-4

Schlüsselwörter

Keywords

Navigation