Skip to main content
Log in

Blocking H1R signal aggravates atherosclerosis by promoting inflammation and foam cell formation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is a chronic inflammatory arterial disease, in which abnormal lipid metabolism and foam cell formation play key roles. Histamine is a vital biogenic amine catalyzed by histidine decarboxylase (HDC) from L-histidine. Histamine H1 receptor (H1R) antagonist is a commonly encountered anti-allergic agent in the clinic. However, the role and mechanism of H1R in atherosclerosis have not been fully elucidated. Here, we explored the effect of H1R on atherosclerosis using Apolipoprotein E-knockout (ApoE−/−) mice with astemizole (AST, a long-acting H1R antagonist) treatment. The results showed that AST increased atherosclerotic plaque area and hepatic lipid accumulation in mice. The result of microarray study identified a significant change of endothelial lipase (LIPG) in CD11b+ myeloid cells derived from HDC-knockout (HDC−/−) mice compared to WT mice. Blocking H1R promoted the formation of foam cells from bone marrow-derived macrophages (BMDMs) of mice by up-regulating p38 mitogen-activated protein kinase (p38 MAPK) and LIPG signaling pathway. Taken together, these findings demonstrate that blocking H1R signal aggravates atherosclerosis by promoting abnormal lipid metabolism and macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.

Key messages

  • Blocking H1R signal with AST aggravated atherosclerosis and increased hepatic lipid accumulation in high-fat diet (HFD)-fed ApoE−/− mice.

  • Blocking H1R signal promoted macrophage-derived foam cell formation via p38 MAPK-LIPG signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu YX, Yuan PZ, Wu JH, Hu B (2021) Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl) 99:1511–1526

    Article  CAS  PubMed  Google Scholar 

  2. Silvis MJM et al (2021) Immunomodulation of the NLRP3 Inflammasome in Atherosclerosis, Coronary Artery Disease, and Acute Myocardial Infarction. J Cardiovasc Transl Res 14:23–34

    Article  PubMed  Google Scholar 

  3. Han Y, Peng L, Wang T (2022) Tadr is an axonal histidine transporter required for visual neurotransmission in Drosophila. Elife 11:e75821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sudarikova AV, Fomin MV, Yankelevich IA, Ilatovskaya DV (2021) The implications of histamine metabolism and signaling in renal function. Physiol Rep 9:e14845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kimura S et al (2018) Relationship between CCL22 expression by vascular smooth muscle cells and macrophage histamine receptors in atherosclerosis. J Atheroscler Thromb 25:1240–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jang J et al (2022) Anti-inflammatory activities of an anti-histamine drug, loratadine, by suppressing TAK1 in AP-1 pathway. Int J Mol Sci 23(7):3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang KY et al (2011) Histamine deficiency decreases atherosclerosis and inflammatory response in apolipoprotein E knockout mice independently of serum cholesterol level. Arterioscler Thromb Vasc Biol 31:800–807

    Article  CAS  PubMed  Google Scholar 

  8. Yamada S, Wang KY, Tanimoto A, Sasaguri Y (2015) Novel function of histamine signaling in hyperlipidemia-induced atherosclerosis: Histamine H1 receptors protect and H2 receptors accelerate atherosclerosis. Pathol Int 65:67–80

    Article  CAS  PubMed  Google Scholar 

  9. Raveendran VV et al (2014) Chronic ingestion of H1-antihistamines increase progression of atherosclerosis in apolipoprotein E-/- mice. PLoS ONE 9:e102165

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang XD et al (2011) Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b+Ly6G+ immature myeloid cells. Nat Med 17:87–95

    Article  CAS  PubMed  Google Scholar 

  11. Zhu B et al (2022) Abnormal histidine metabolism promotes macrophage lipid accumulation under Ox-LDL condition. Biochem Biophys Res Commun 588:161–167

    Article  CAS  PubMed  Google Scholar 

  12. Guo H et al (2022) A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 78:557–572

    Article  CAS  PubMed  Google Scholar 

  13. Sylvers-Davie KL, Segura-Roman A, Salvi AM, Schache KJ, Davies BSJ (2021) Angiopoietin-like 3 inhibition of endothelial lipase is not modulated by angiopoietin-like 8. J Lipid Res 62:100112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang C et al (2019) Sex hormones affect endothelial lipase-mediated lipid metabolism and atherosclerosis. Lipids Health Dis 18:226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen T et al (2015) Highly selective “Off-On” fluorescent probe for histidine and its imaging in living cells. Biosens Bioelectron 66:259–265

    Article  CAS  PubMed  Google Scholar 

  16. Droin C et al (2021) Space-time logic of liver gene expression at sub-lobular scale. Nat Metab 3:43–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma C et al (2020) Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE(-/-) mice. Theranostics 10:1090–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar S et al (2021) Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 17:2273–2289

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X et al (2014) Angiotensin II upregulates endothelial lipase expression via the NF-kappa B and MAPK signaling pathways. PLoS ONE 9:e107634

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yue X et al (2016) Endothelial lipase is upregulated by interleukin-6 partly via the p38 MAPK and p65 NF-kappaB signaling pathways. Mol Med Rep 14:1979–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aimo A et al (2018) The IL-33/ST2 pathway, inflammation and atherosclerosis: Trigger and target? Int J Cardiol 267:188–192

    Article  PubMed  Google Scholar 

  22. Chan YH, Ramji DP (2022) Probing Inflammasome Activation in Atherosclerosis. Methods Mol Biol 2419:313–331

    Article  CAS  PubMed  Google Scholar 

  23. González L, Rivera K, Andia ME, Martinez Rodriguez G (2022) The IL-1 Family and its role in atherosclerosis. Int J Mol Sci 24(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Munjal A, Khandia R (2020) Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition. Adv Protein Chem Struct Biol 120:85–122

    Article  CAS  PubMed  Google Scholar 

  25. Kim CW, Oh ET, Park HJ (2021) A strategy to prevent atherosclerosis via TNF receptor regulation. FASEB J 35:e21391

    CAS  PubMed  Google Scholar 

  26. Cheon SY, Cho K (2021) Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. J Mol Med (Berl) 99:1497–1509

    Article  CAS  PubMed  Google Scholar 

  27. Cadenas C et al (2019) LIPG-promoted lipid storage mediates adaptation to oxidative stress in breast cancer. Int J Cancer 145:901–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiu G, Ho AC, Yu W, Hill JS (2007) Suppression of endothelial or lipoprotein lipase in THP-1 macrophages attenuates proinflammatory cytokine secretion. J Lipid Res 48:385–394

    Article  CAS  PubMed  Google Scholar 

  29. Jaye M et al (1999) A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet 21:424–428

    Article  CAS  PubMed  Google Scholar 

  30. Han H et al (2019) Impact of serum levels of lipoprotein lipase, hepatic lipase, and endothelial lipase on the progression of coronary artery disease. J Interv Med 2:16–20

    PubMed  PubMed Central  Google Scholar 

  31. Ma K et al (2003) Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci USA 100:2748–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishida T et al (2004) Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J Biol Chem 279:45085–45092

    Article  CAS  PubMed  Google Scholar 

  33. Reustle A, Torzewski M (2018) Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int J Mol Sci 19(12):3761

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao M et al (2002) Activation of the p38 MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS 110:458–468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Weiwei Zhang, Jianguo Jia, Bingyu Li, and Sanli Qian for their contributions and technical support to this work.

Funding

The authors gratefully acknowledge the grants from the National Natural Science Foundation of China (82170258), the Science Foundation of Shanghai Committee of Science and Technology (22ZR1446700), Shanghai Sailing Program (23YF1431600), the Key Project of the Science and Technology Committee of Baoshan district of Shanghai (21-E-42), and Guangdong Basic and Applied Basic Research Foundation (2022A1515140176).

Author information

Authors and Affiliations

Authors

Contributions

Xiangdong Yang, Chun Xiao and Yunzeng Zou designed the study and organized the manuscript. Baoling Zhu, Yi Yang, Xiangfei Wang and Dili Sun performed the experiments and wrote the manuscript. Xiyang Yang and Dili Sun analyzed the data and revised the manuscript. Xiaowei Zhu and Suling Ding contributed to the design of the study and the revision of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Chun Xiao, Yunzeng Zou or Xiangdong Yang.

Ethics declarations

Ethics approval

All animal-related experiments in this study were carried out according to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication, 8th Edition, 2011). All of experimental protocols were approved by the Committee on the Ethics of Animal Experiments of Fudan University.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that there are no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Yang, Y., Wang, X. et al. Blocking H1R signal aggravates atherosclerosis by promoting inflammation and foam cell formation. J Mol Med (2024). https://doi.org/10.1007/s00109-024-02453-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00109-024-02453-5

Keywords

Navigation