Skip to main content

Advertisement

Log in

Histone modification in podocyte injury of diabetic nephropathy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone β-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Qi C, Mao X, Zhang Z, Wu H (2017) Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017:8637138

    PubMed  PubMed Central  Google Scholar 

  2. Nagata M (2016) Podocyte injury and its consequences. Kidney Int 89(6):1221–1230

    Article  CAS  PubMed  Google Scholar 

  3. White KE, Bilous RW (2004) Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant 19(6):1437–1440

    Article  PubMed  Google Scholar 

  4. Lan J, Lepikhov K, Giehr P, Walter J (2017) Histone and DNA methylation control by H3 serine 10/threonine 11 phosphorylation in the mouse zygote. Epigenetics Chromatin 10:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nathan DM (2014) The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37(1):9–16

    Article  CAS  PubMed  Google Scholar 

  6. Kato M, Natarajan R (2019) Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 15(6):327–345

    Article  PubMed  PubMed Central  Google Scholar 

  7. Epidemiology of Diabetes Interventions and Complications (EDIC) (1999) Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22(1): 99–111

  8. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu Z, Liu N, Wang F (2017) Epigenetic regulations in diabetic nephropathy. J Diabetes Res 2017:7805058

    PubMed  PubMed Central  Google Scholar 

  10. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  11. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98(3):285–294

    Article  CAS  PubMed  Google Scholar 

  12. Voigt P, Reinberg D (2011) Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. ChemBioChem 12(2):236–252

    Article  CAS  PubMed  Google Scholar 

  13. Kimura H (2013) Histone modifications for human epigenome analysis. J Hum Genet 58(7):439–445

    Article  CAS  PubMed  Google Scholar 

  14. Jin J, Gong J, Zhao L, Zhang H, He Q, Jiang X (2019) Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. J Diabetes 11(10):826–836

    Article  CAS  PubMed  Google Scholar 

  15. Lu CC, Wang GH, Lu J, Chen PP, Zhang Y, Hu ZB et al (2019) Role of podocyte injury in glomerulosclerosis. Adv Exp Med Biol 1165:195–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liapis H, Romagnani P, Anders HJ (2013) New insights into the pathology of podocyte loss: mitotic catastrophe. Am J Pathol 183(5):1364–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kopp JB, Anders HJ, Susztak K, Podesta MA, Remuzzi G, Hildebrandt F et al (2020) Podocytopathies. Nat Rev Dis Primers 6(1):68

    Article  PubMed  PubMed Central  Google Scholar 

  18. Al-Malki AL (2014) Assessment of urinary osteopontin in association with podocyte for early predication of nephropathy in diabetic patients. Dis Markers 2014:493736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dai H, Liu Q, Liu B (2017) Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res 2017:2615286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Schiffer M, Bitzer M, Roberts IS, Kopp JB, Ten DP, Mundel P et al (2001) Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest 108(6):807–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maquigussa E, Paterno JC, de Oliveira PG, Da SPM, Varela VA, Da SNA et al (2018) Klotho and PPAR gamma activation mediate the renoprotective effect of losartan in the 5/6 nephrectomy model. Front Physiol 9:1033

    Article  PubMed  PubMed Central  Google Scholar 

  22. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116(7):1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G et al (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 285(48):37503–37512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225–233

    Article  CAS  PubMed  Google Scholar 

  25. Cui FQ, Wang YF, Gao YB, Meng Y, Cai Z, Shen C et al (2019) Effects of BSF on podocyte apoptosis via regulating the ROS-mediated PI3K/AKT pathway in DN. J Diabetes Res 2019:9512406

    PubMed  PubMed Central  Google Scholar 

  26. Chen X, Liu W, Xiao J, Zhang Y, Chen Y, Luo C et al (2020) FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. Faseb J 34(10):13300–13316

    Article  CAS  PubMed  Google Scholar 

  27. Gui D, Guo Y, Wang F, Liu W, Chen J, Chen Y et al (2012) Astragaloside IV, a novel antioxidant, prevents glucose-induced podocyte apoptosis in vitro and in vivo. PLoS ONE 7(6):e39824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Araujo M, Wilcox CS (2014) Oxidative stress in hypertension: role of the kidney. Antioxid Redox Signal 20(1):74–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chung SS, Ho EC, Lam KS, Chung SK (2003) Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 14(8 Suppl 3):S233–S236

    Article  CAS  PubMed  Google Scholar 

  30. Forbes JM, Cooper ME, Oldfield MD, Thomas MC (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14(8 Suppl 3):S254–S258

    Article  CAS  PubMed  Google Scholar 

  31. Yamagishi S, Matsui T (2010) Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 3(2):101–108

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ha H, Lee HB (2005) Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 10(Suppl):S7–S10

    Article  CAS  Google Scholar 

  33. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu N, Shi Y, Zhuang S (2016) Autophagy in chronic kidney diseases. Kidney Dis (Basel) 2(1):37–45

    Article  Google Scholar 

  35. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M et al (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767

    Article  CAS  PubMed  Google Scholar 

  36. Liu N, Xu L, Shi Y, Zhuang S (2017) Podocyte autophagy: a potential therapeutic target to prevent the progression of diabetic nephropathy. J Diabetes Res 2017:3560238

    PubMed  PubMed Central  Google Scholar 

  37. Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Li QX, Wang XJ, Zhang C, Duan YQ, Wang ZY et al (2016) beta-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 7:e2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121(6):2181–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vollenbroker B, George B, Wolfgart M, Saleem MA, Pavenstadt H, Weide T (2009) mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol 296(2):F418–F426

    Article  PubMed  CAS  Google Scholar 

  41. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16(4):1987–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ha TS (2013) Roles of adaptor proteins in podocyte biology. World J Nephrol 2(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ying Q, Wu G (2017) Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update. Ren Fail 39(1):474–483

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xing L, Liu Q, Fu S, Li S, Yang L, Liu S et al (2015) PTEN inhibits high glucose-induced phenotypic transition in podocytes. J Cell Biochem 116(8):1776–1784

    Article  CAS  PubMed  Google Scholar 

  45. Xu H, Wang X, Liu M, He X (2017) Tangzhiqing granules alleviate podocyte epithelial-mesenchymal transition in kidney of diabetic rats. Evid Based Complement Alternat Med 2017:1479136

    PubMed  PubMed Central  Google Scholar 

  46. Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293(3):L525–L534

    Article  CAS  PubMed  Google Scholar 

  47. Chiang YT, Ip W, Jin T (2012) The role of the Wnt signaling pathway in incretin hormone production and function. Front Physiol 3:273

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y (2009) Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol 20(9):1997–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ichimura K, Kurihara H, Sakai T (2003) Actin filament organization of foot processes in rat podocytes. J Histochem Cytochem 51(12):1589–1600

    Article  CAS  PubMed  Google Scholar 

  50. Perico L, Conti S, Benigni A, Remuzzi G (2016) Podocyte-actin dynamics in health and disease. Nat Rev Nephrol 12(11):692–710

    Article  CAS  PubMed  Google Scholar 

  51. Mathieson PW (2012) The podocyte cytoskeleton in health and in disease. Clin Kidney J 5(6):498–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wieder N, Greka A (2016) Calcium, TRPC channels, and regulation of the actin cytoskeleton in podocytes: towards a future of targeted therapies. Pediatr Nephrol 31(7):1047–1054

    Article  PubMed  Google Scholar 

  53. Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C et al (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37(7):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tian D, Jacobo SM, Billing D, Rozkalne A, Gage SD, Anagnostou T et al (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci Signal 3(145):a77

    Article  CAS  Google Scholar 

  55. Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao T et al (2020) Role of transient receptor potential canonical channel 6 (TRPC6) in diabetic kidney disease by regulating podocyte actin cytoskeleton rearrangement. J Diabetes Res 2020:6897390

    PubMed  PubMed Central  Google Scholar 

  56. Sonneveld R, van der Vlag J, Baltissen MP, Verkaart SA, Wetzels JF, Berden JH et al (2014) Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. Am J Pathol 184(6):1715–1726

    Article  CAS  PubMed  Google Scholar 

  57. Yang H, Zhao B, Liao C, Zhang R, Meng K, Xu J et al (2013) High glucose-induced apoptosis in cultured podocytes involves TRPC6-dependent calcium entry via the RhoA/ROCK pathway. Biochem Biophys Res Commun 434(2):394–400

    Article  CAS  PubMed  Google Scholar 

  58. Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodliff A, Lay AC et al (2019) TRPC6 binds to and activates calpain, independent of its channel activity, and regulates podocyte cytoskeleton, cell adhesion, and motility. J Am Soc Nephrol 30(10):1910–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dryer SE, Roshanravan H, Kim EY (2019) TRPC channels: regulation, dysregulation and contributions to chronic kidney disease. Biochim Biophys Acta Mol Basis Dis 1865(6):1041–1066

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S et al (2017) A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358(6368):1332–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang X, Dande RR, Yu H, Samelko B, Miller RE, Altintas MM et al (2018) TRPC5 does not cause or aggravate glomerular disease. J Am Soc Nephrol 29(2):409–415

    Article  CAS  PubMed  Google Scholar 

  62. Siddiqi FS, Advani A (2013) Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes. Diabetes 62(11):3647–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang YY, Tang LQ, Wei W (2018) Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFbeta1-PI3K/AKT pathway. Eur J Pharmacol 824:185–192

    Article  CAS  PubMed  Google Scholar 

  64. Wu X, Gao Y, Xu L, Dang W, Yan H, Zou D et al (2017) Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci Rep 7(1):9371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Howlett AC, Blume LC, Dalton GD (2010) CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 17(14):1382–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Horvath B, Mukhopadhyay P, Hasko G, Pacher P (2012) The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am J Pathol 180(2):432–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gruden G, Barutta F, Kunos G, Pacher P (2016) Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol 173(7):1116–1127

    Article  CAS  PubMed  Google Scholar 

  68. Barutta F, Mastrocola R, Bellini S, Bruno G, Gruden G (2018) Cannabinoid receptors in diabetic kidney disease. Curr Diab Rep 18(2):9

    Article  CAS  PubMed  Google Scholar 

  69. Barutta F, Corbelli A, Mastrocola R, Gambino R, Di Marzo V, Pinach S et al (2010) Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 59(4):1046–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jourdan T, Szanda G, Rosenberg AZ, Tam J, Earley BJ, Godlewski G et al (2014) Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci U S A 111(50):E5420–E5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barutta F, Grimaldi S, Franco I, Bellini S, Gambino R, Pinach S et al (2014) Deficiency of cannabinoid receptor of type 2 worsens renal functional and structural abnormalities in streptozotocin-induced diabetic mice. Kidney Int 86(5):979–990

    Article  CAS  PubMed  Google Scholar 

  72. Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP et al (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60(9):2386–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barutta F, Grimaldi S, Gambino R, Vemuri K, Makriyannis A, Annaratone L et al (2017) Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy. Nephrol Dial Transplant 32(10):1655–1665

    Article  CAS  PubMed  Google Scholar 

  74. Jorgensen S, Schotta G, Sorensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41(5):2797–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun GD, Cui WP, Guo QY, Miao LN (2014) Histone lysine methylation in diabetic nephropathy. J Diabetes Res 2014:654148

    PubMed  PubMed Central  Google Scholar 

  76. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25(13):1345–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163):689–694

    Article  CAS  PubMed  Google Scholar 

  79. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D et al (2007) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849):447–450

    Article  CAS  PubMed  Google Scholar 

  80. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    Article  CAS  PubMed  Google Scholar 

  81. Chen H, Huang Y, Zhu X, Liu C, Yuan Y, Su H et al (2019) Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J Physiol 597(6):1643–1660

    Article  CAS  PubMed  Google Scholar 

  82. Liebisch M, Wolf G (2020) AGE-induced suppression of EZH2 mediates injury of podocytes by reducing H3K27me3. Am J Nephrol 51(9):676–692

    Article  CAS  PubMed  Google Scholar 

  83. Majumder S, Thieme K, Batchu SN, Alghamdi TA, Bowskill BB, Kabir MG et al (2018) Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Invest 128(1):483–499

    Article  PubMed  Google Scholar 

  84. Lin CL, Hsu YC, Huang YT, Shih YH, Wang CJ, Chiang WC et al (2019) A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. Embo Mol Med 11(5)

  85. Liu DW, Zhang JH, Liu FX, Wang XT, Pan SK, Jiang DK et al (2019) Silencing of long noncoding RNA PVT1 inhibits podocyte damage and apoptosis in diabetic nephropathy by upregulating FOXA1. Exp Mol Med 51(8):1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hughes AL, Kelley JR, Klose RJ (2020) Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim Biophys Acta Gene Regul Mech 1863(8):194567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lefevre GM, Patel SR, Kim D, Tessarollo L, Dressler GR (2010) Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. Plos Genet 6(10):e1001142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S et al (2010) Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant 25(6):1811–1817

    Article  CAS  PubMed  Google Scholar 

  89. Miao F, Gonzalo IG, Lanting L, Natarajan R (2004) In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279(17):18091–18097

    Article  CAS  PubMed  Google Scholar 

  90. Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z et al (2021) DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 131(10)

  91. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318

    Article  CAS  PubMed  Google Scholar 

  93. Shi W, Huang Y, Zhao X, Xie Z, Dong W, Li R et al (2020) Histone deacetylase 4 mediates high glucose-induced podocyte apoptosis via upregulation of calcineurin. Biochem Biophys Res Commun 533(4):1061–1068

    Article  CAS  PubMed  Google Scholar 

  94. Lin CL, Lee PH, Hsu YC, Lei CC, Ko JY, Chuang PC et al (2014) MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol 25(8):1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gondaliya P, P DA, Jash K, Tekade RK, Srivastava A, Kalia K (2020) miR-29b attenuates histone deacetylase-4 mediated podocyte dysfunction and renal fibrosis in diabetic nephropathy. J Diabetes Metab Disord 19(1): 13–27

  96. Lundh M, Petersen PS, Isidor MS, Kazoka-Sorensen DN, Plucinska K, Shamsi F et al (2019) Afadin is a scaffold protein repressing insulin action via HDAC6 in adipose tissue. Embo Rep 20(8):e48216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Liang T, Qi C, Lai Y, Xie J, Wang H, Zhang L et al (2020) HDAC6-mediated alpha-tubulin deacetylation suppresses autophagy and enhances motility of podocytes in diabetic nephropathy. J Cell Mol Med 24(19):11558–11572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hong Q, Zhang L, Das B, Li Z, Liu B, Cai G et al (2018) Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int 93(6):1330–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Menini S, Iacobini C, Oddi G, Ricci C, Simonelli P, Fallucca S et al (2007) Increased glomerular cell (podocyte) apoptosis in rats with streptozotocin-induced diabetes mellitus: role in the development of diabetic glomerular disease. Diabetologia 50(12):2591–2599

    Article  CAS  PubMed  Google Scholar 

  100. Kim EJ, Kho JH, Kang MR, Um SJ (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28(2):277–290

    Article  CAS  PubMed  Google Scholar 

  101. Wakino S, Hasegawa K, Itoh H (2015) Sirtuin and metabolic kidney disease. Kidney Int 88(4):691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19(11):1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z et al (2017) Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun 8(1):413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS (2004) Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 64(3):1079–1086

    Article  CAS  PubMed  Google Scholar 

  105. Van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, van Grunsven LA et al (2011) Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol 22(10):1863–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Khan S, Jena G, Tikoo K, Kumar V (2015) Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-kappaB/iNOS signaling in diabetic rat. Biochimie 110:1–16

    Article  CAS  PubMed  Google Scholar 

  107. Gilbert RE, Huang Q, Thai K, Advani SL, Lee K, Yuen DA et al (2011) Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int 79(12):1312–1321

    Article  CAS  PubMed  Google Scholar 

  108. Xue H, Li P, Luo Y, Wu C, Liu Y, Qin X et al (2019) Salidroside stimulates the Sirt1/PGC-1alpha axis and ameliorates diabetic nephropathy in mice. Phytomedicine 54:240–247

    Article  CAS  PubMed  Google Scholar 

  109. Zhang T, Chi Y, Kang Y, Lu H, Niu H, Liu W et al (2019) Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1alpha mediated attenuation of mitochondrial oxidative stress. J Cell Physiol 234(4):5033–5043

    Article  CAS  PubMed  Google Scholar 

  110. Wang X, Gao Y, Tian N, Wang T, Shi Y, Xu J et al (2019) Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-kappaB p65 axis. Sci Rep 9(1):323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Liu F, Zong M, Wen X, Li X, Wang J, Wang Y et al (2016) Silencing of histone deacetylase 9 expression in podocytes attenuates kidney injury in diabetic nephropathy. Sci Rep 6:33676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70(3):789–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21(9):534–542

    Article  CAS  PubMed  Google Scholar 

  114. Jason LJ, Moore SC, Lewis JD, Lindsey G, Ausio J (2002) Histone ubiquitination: a tagging tail unfolds? BioEssays 24(2):166–174

    Article  CAS  PubMed  Google Scholar 

  115. Uckelmann M, Sixma TK (2017) Histone ubiquitination in the DNA damage response. DNA Repair (Amst) 56:92–101

    Article  CAS  Google Scholar 

  116. Goru SK, Gaikwad AB (2018) Novel reno-protective mechanism of Aspirin involves H2AK119 monoubiquitination and Set7 in preventing type 1 diabetic nephropathy. Pharmacol Rep 70(3):497–502

    Article  CAS  PubMed  Google Scholar 

  117. Khalil AM, Wahlestedt C (2008) Epigenetic mechanisms of gene regulation during mammalian spermatogenesis. Epigenetics-Us 3(1):21–28

    Article  Google Scholar 

  118. Rossetto D, Avvakumov N, Cote J (2012) Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics-Us 7(10):1098–1108

    Article  CAS  Google Scholar 

  119. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications - writers that read. Embo Rep 16(11):1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cruickshank MN, Besant P, Ulgiati D (2010) The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 39(5):1087–1105

    Article  CAS  PubMed  Google Scholar 

  121. Hammond SL, Byrum SD, Namjoshi S, Graves HK, Dennehey BK, Tackett AJ et al (2014) Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle 13(3):440–452

    Article  CAS  PubMed  Google Scholar 

  122. Park CH, Kim KT (2012) Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cdelta. PLoS ONE 7(9):e44307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao H, Huang X, Halicka HD, Darzynkiewicz Z (2019) Detection of histone H2AX phosphorylation on Ser-139 as an indicator of DNA damage. Curr Protoc Cytom 89(1):e55

    PubMed  Google Scholar 

  124. Kuo LJ, Yang LX (2008) Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo 22(3):305–309

    CAS  PubMed  Google Scholar 

  125. Alghamdi TA, Batchu SN, Hadden MJ, Yerra VG, Liu Y, Bowskill BB et al (2018) Histone H3 serine 10 phosphorylation facilitates endothelial activation in diabetic kidney disease. Diabetes 67(12):2668–2681

    Article  PubMed  Google Scholar 

  126. Liao JK (2013) Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 123(2):540–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Navarro-Gonzalez JF, Mora-Fernandez C, Muros DFM, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7(6):327–340

    Article  CAS  PubMed  Google Scholar 

  128. Khan DH, Healy S, He S, Lichtensztejn D, Klewes L, Sharma KL et al (2017) Mitogen-induced distinct epialleles are phosphorylated at either H3S10 or H3S28, depending on H3K27 acetylation. Mol Biol Cell 28(6):817–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li K, Wang Z (2021) Histone crotonylation-centric gene regulation. Epigenetics Chromatin 14(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Martinez-Moreno JM, Fontecha-Barriuso M, Martin-Sanchez D, Sanchez-Nino MD, Ruiz-Ortega M, Sanz AB et al (2020) The contribution of histone crotonylation to tissue health and disease: focus on kidney health. Front Pharmacol 11:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Poplawski MM, Mastaitis JW, Isoda F, Grosjean F, Zheng F, Mobbs CV (2011) Reversal of diabetic nephropathy by a ketogenic diet. PLoS ONE 6(4):e18604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luo W, Yu Y, Wang H, Liu K, Wang Y, Huang M et al (2020) Up-regulation of MMP-2 by histone H3K9 beta-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat. Acta Diabetol 57(12):1501–1509

    Article  CAS  PubMed  Google Scholar 

  134. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318(5849):444–447

    Article  CAS  PubMed  Google Scholar 

  135. Duan R, Ryu HY, Ahn SH (2020) Symmetric dimethylation on histone H4R3 associates with histone deacetylation to maintain properly polarized cell growth. Res Microbiol 171(2):91–98

    Article  CAS  PubMed  Google Scholar 

  136. Bouchard C, Sahu P, Meixner M, Notzold RR, Rust MB, Kremmer E et al (2018) Genomic location of PRMT6-dependent H3R2 methylation is linked to the transcriptional outcome of associated genes. Cell Rep 24(12):3339–3352

    Article  CAS  PubMed  Google Scholar 

  137. Li HT, Gong T, Zhou Z, Liu YT, Cao X, He Y et al (2015) Yeast Hmt1 catalyses asymmetric dimethylation of histone H3 arginine 2 in vitro. Biochem J 467(3):507–515

    Article  CAS  PubMed  Google Scholar 

  138. Sun L, Wang M, Lv Z, Yang N, Liu Y, Bao S et al (2011) Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc Natl Acad Sci U S A 108(51):20538–20543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Collins BE, Greer CB, Coleman BC, Sweatt JD (2019) Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics Chromatin 12(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  140. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24(21):9630–9645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wesche J, Kuhn S, Kessler BM, Salton M, Wolf A (2017) Protein arginine methylation: a prominent modification and its demethylation. Cell Mol Life Sci 74(18):3305–3315

    Article  CAS  PubMed  Google Scholar 

  142. Zhang J, Jing L, Li M, He L, Guo Z (2019) Regulation of histone arginine methylation/demethylation by methylase and demethylase (Review). Mol Med Rep 19(5):3963–3971

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Jiang Y, Li C, Wu Q, An P, Huang L, Wang J et al (2019) Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun 10(1):2935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng L et al (2019) H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science 363(6424):294–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang Y, Chen W, Lian J, Zhang H, Yu B, Zhang M et al (2020) The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1alpha. Cell Death Differ 27(2):695–710

    Article  CAS  PubMed  Google Scholar 

  146. Liu M, Zhang Q, Pei L, Zou Y, Chen G, Wang H (2019) Corticosterone rather than ethanol epigenetic programmed testicular dysplasia caused by prenatal ethanol exposure in male offspring rats. Epigenetics-Us 14(3):245–259

    Article  Google Scholar 

  147. Li X, Chen X, Zhou W, Ji S, Li X, Li G et al (2017) Effect of melatonin on neuronal differentiation requires CBP/p300-mediated acetylation of histone H3 lysine 14. Neuroscience 364:45–59

    Article  CAS  PubMed  Google Scholar 

  148. Newman DM, Voss AK, Thomas T, Allan RS (2017) Essential role for the histone acetyltransferase KAT7 in T cell development, fitness, and survival. J Leukoc Biol 101(4):887–892

    Article  CAS  PubMed  Google Scholar 

  149. Maltby VE, Martin BJ, Brind’Amour J, Chruscicki AT, Mcburney KL, Schulze JM et al (2012) Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 109(45):18505–18510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheng SL, Ramachandran B, Behrmann A, Shao JS, Mead M, Smith C et al (2015) Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/- mice by restraining noncanonical Wnt signals. Circ Res 117(2):142–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Henry RA, Kuo YM, Andrews AJ (2013) Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry-Us 52(34):5746–5759

    Article  CAS  Google Scholar 

  152. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a18713

    Article  Google Scholar 

  153. Poulard C, Corbo L, Le Romancer M (2016) Protein arginine methylation/demethylation and cancer. Oncotarget 7(41):67532–67550

    Article  PubMed  PubMed Central  Google Scholar 

  154. Xiao J, Zhang H, Xing L, Xu S, Liu H, Chong K et al (2013) Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis. J Plant Physiol 170(4):444–451

    Article  CAS  PubMed  Google Scholar 

  155. Li F, Wu R, Cui X, Zha L, Yu L, Shi H et al (2016) Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. J Biol Chem 291(9):4523–4536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Caslini C, Hong S, Ban YJ, Chen XS, Ince TA (2019) HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene 38(39):6599–6614

    Article  CAS  PubMed  Google Scholar 

  157. Skucha A, Ebner J, Grebien F (2019) Roles of SETD2 in leukemia-transcription, DNA-damage, and beyond. Int J Mol Sci 20(5)

  158. Kang JY, Kim JY, Kim KB, Park JW, Cho H, Hahm JY et al (2018) KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing. Faseb J 32(10):5737–5750

    Article  CAS  PubMed  Google Scholar 

  159. Li S, Ali S, Duan X, Liu S, Du J, Liu C et al (2018) JMJD1B Demethylates H4R3me2s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep 23(2):389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF et al (2012) Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics-Us 7(4):340–343

    Article  CAS  Google Scholar 

  161. Ferreira RC, Popova EY, James J, Briones MR, Zhang SS, Barnstable CJ (2017) Histone deacetylase 1 is essential for rod photoreceptor differentiation by regulating acetylation at histone H3 lysine 9 and histone H4 lysine 12 in the mouse retina. J Biol Chem 292(6):2422–2440

    Article  CAS  PubMed  Google Scholar 

  162. Metzger E, Wang S, Urban S, Willmann D, Schmidt A, Offermann A et al (2019) KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat Struct Mol Biol 26(5):361–371

    Article  CAS  PubMed  Google Scholar 

  163. Shen H, Xu W, Lan F (2017) Histone lysine demethylases in mammalian embryonic development. Exp Mol Med 49(4):e325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful remarks. They also thank the associate editor and the reviewers for their useful feedback that improved this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the review conception and design. Literature reading, associated manuscript collection, and analysis were performed by Simeng Wang, Xinyu Zhang, and Qinglian Wang. The modification of this review was performed by Simeng Wang, Qinglian Wang, and Rong Wang. The first draft of the manuscript was written by Simeng Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qinglian Wang or Rong Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, X., Wang, Q. et al. Histone modification in podocyte injury of diabetic nephropathy. J Mol Med 100, 1373–1386 (2022). https://doi.org/10.1007/s00109-022-02247-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02247-7

Keywords

Navigation