Skip to main content
Log in

mTOR-FABP4 signal is activated in brain arteriovenous malformations in humans

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Arteriovenous malformations (AVMs) are the most common types of cerebral vascular malformations, which are dynamic lesions with de novo growth potentials. The dysfunction of endothelial cells has been postulated to play a role in the pathogenesis of brain AVMs. mTOR-FABP4 signal enhances the angiogenic responses of endothelial cells and is not activated in the normal cerebral vasculature. Herein, we investigated the hypothesis that the mTOR-FABP4 signal may be activated in brain AVMs. The abundance of molecules in mTOR-FABP4 signal expression was detected by immunohistochemistry and Western blotting; special expressing cells were further characterized by double immunofluorescence using antibodies against various cell-specific markers. Next, several functional assays were performed to analyze the influence of the mTOR-FABP4 signal on proliferation, apoptosis, migration, and vascular tube formation of endothelial cells in human umbilical vein endothelial cells (HUVECs) using rapamycin and L-leucine. The expression of mTOR, p-mTOR, and FABP4 was increased in endothelial cells of human brain AVMs. Endothelial cell mTOR and p-mTOR expression were present in 70% and 55% of brain AVMs, respectively. Moreover, a population of FABP4-positive endothelial cells was detected in 80% of brain AVMs. The mTOR-FABP4 signal was activated and inhibited by L-leucine and rapamycin in HUVECs. The proliferation, apoptosis, migration, and vascular tube formation of endothelial cells could be inhibited by rapamycin. The mTOR-FABP4 signal was activated in human brain AVMs, and the mTOR-FABP4 signal was involved in proliferation, apoptosis, migration, and the vascular tube formation of endothelial cells. Taken together, whether rapamycin has therapeutic potential for treating human brain AVMs is worthy of further study.

Key messages

  • We confirmed that the mTOR- FABP4 pathway is activated in human brain arteriovenous malformations.

  • We confirmed that mTOR signaling pathway affects endothelial cell function by regulating proliferation, migration, apoptosis, and tube formation of endothelial cell.

  • Our study can provide theoretical support for mTOR pathway inhibitors in the treatment of human brain arteriovenous malformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data will be shared with qualified investigators upon request; please contact zhaoyuanli@126.com.

References

  1. Lawton M, Rutledge W, Kim H, Stapf C, Whitehead K, Li D, Krings T, Terbrugge K, Kondziolka D, Morgan M et al (2015) Brain arteriovenous malformations. Nat Rev Dis Primers 1:15008

    Article  Google Scholar 

  2. Gabriel R, Kim H, Sidney S, McCulloch C, Singh V, Johnston S, Ko N, Achrol A, Zaroff J, Young W (2010) Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 41:21–26

    Article  Google Scholar 

  3. Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao Y, Yu J, Ma Y, Zhang P, Ling F et al (2019) High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 142:23–34

    Article  Google Scholar 

  4. Kawasaki J, Aegerter S, Fevurly R, Mammoto A, Mammoto T, Sahin M, Mably J, Fishman S, Chan J (2014) RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Investig 124:2774–2784

    Article  CAS  Google Scholar 

  5. Nikolaev S, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Jahromi BR, Khyzha N, DiStefano P, Suutarinen S, Kiehl T et al (2018) Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med 378:250–261

    Article  CAS  Google Scholar 

  6. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  Google Scholar 

  7. Haunerland N, Spener F (2004) Fatty acid-binding proteins–insights from genetic manipulations. Prog Lipid Res 43:328–349

    Article  CAS  Google Scholar 

  8. Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince TA, Kozakewich H, Bischoff J, Cataltepe S (2009) Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J 23:3865–3873

    Article  CAS  Google Scholar 

  9. Furuhashi M, Fucho R, Görgün C, Tuncman G, Cao H, Hotamisligil G (2008) Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Investig 118:2640–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Elmasri H, Ghelfi E, Yu C, Traphagen S, Cernadas M, Cao H, Shi G, Plutzky J, Sahin M, Hotamisligil G et al (2012) Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway. Angiogenesis 15:457–468

    Article  CAS  Google Scholar 

  11. Wang Y, Chen J, Tang W, Zhang Y, Li X (2017) Rapamycin inhibits the proliferation of endothelial cells in hemangioma by blocking the mTOR-FABP4 pathway. Biomed Pharmacother 85:272–279

    Article  CAS  Google Scholar 

  12. Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool for quantitative analysis of vascular networks. PLoS ONE 6:e27385

    Article  CAS  Google Scholar 

  13. Berg J, Gallione C, Stenzel T, Johnson D, Allen W, Schwartz C, Jackson C, Porteous M, Marchuk D (1997) The activin receptor-like kinase 1 gene: genomic structure and mutations in hereditary hemorrhagic telangiectasia type 2. Am J Hum Genet 61:60–67

    Article  CAS  Google Scholar 

  14. McAllister K, Grogg K, Johnson D, Gallione C, Baldwin M, Jackson C, Helmbold E, Markel D, McKinnon W, Murrell J (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  CAS  Google Scholar 

  15. Shirley M, Tang H, Gallione C, Baugher J, Frelin L, Cohen B, North P, Marchuk D, Comi A, Pevsner J (2013) Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 368:1971–1979

    Article  CAS  Google Scholar 

  16. Krithika S, Sumi S (2021) Neurovascular inflammation in the pathogenesis of brain arteriovenous malformations. J Cell Physiol 236:4841–4856

    Article  CAS  Google Scholar 

  17. Shoemaker L, McCormick A, Allen B, Chang S (2020) Evidence for endothelial-to-mesenchymal transition in human brain arteriovenous malformations. Clin Transl Med 10:e99

    Article  Google Scholar 

  18. Cataltepe S, Arikan M, Liang X, Smith T, Cataltepe O (2015) Fatty acid binding protein 4 expression in cerebral vascular malformations: implications for vascular remodelling. Neuropathol Appl Neurobiol 41:646–656

    Article  CAS  Google Scholar 

  19. Dormond-Meuwly A, Roulin D, Dufour M, Benoit M, Demartines N, Dormond O (2011) The inhibition of MAPK potentiates the anti-angiogenic efficacy of mTOR inhibitors. Biochem Biophys Res Commun 407:714–719

    Article  CAS  Google Scholar 

  20. Manning B, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405

    Article  CAS  Google Scholar 

  21. Woodcock H, Eley J, Guillotin D, Platé M, Nanthakumar C, Martufi M, Peace S, Joberty G, Poeckel D, Good R et al (2019) The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun 10:6

    Article  CAS  Google Scholar 

  22. Pause A, Belsham G, Gingras A, Donzé O, Lin T, Lawrence J, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371:762–767

    Article  CAS  Google Scholar 

  23. Terruzzi I, Pellegatta F, Luzi L (2005) Differential p70S6k and 4E-BP1 regulation by insulin and amino acids in vascular endothelial and smooth muscle cells. Acta Diabetol 42:139–146

    Article  CAS  Google Scholar 

  24. Ramanathan A, Schreiber S (2009) Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 106:22229–22232

    Article  CAS  Google Scholar 

  25. Kang S, Pacold M, Cervantes C, Lim D, Lou H, Ottina K, Gray N, Turk B, Yaffe M, Sabatini D (2013) mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341:1236566

    Article  Google Scholar 

  26. Gao H, Zhang J, Liu T, Shi W (2011) Rapamycin prevents endothelial cell migration by inhibiting the endothelial-to-mesenchymal transition and matrix metalloproteinase-2 and -9: an in vitro study. Mol Vis 17:3406–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng N, Ding X, Jahan R (2014) Low concentration of rapamycin inhibits hemangioma endothelial cell proliferation, migration, and vascular tumor formation in mice. Curr Ther Res Clin Exp 76:99–103

    Article  CAS  Google Scholar 

  28. Si Y, Chu H, Zhu W, Xiao T, Shen X, Fu Y, Xu R, Jiang H (2018) Concentration-dependent effects of rapamycin on proliferation, migration and apoptosis of endothelial cells in human venous malformation. Exp Ther Med 16:4595–4601

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Wu P, Dai J, Zhang T, Bihl J, Wang C, Liu Y, Shi H (2020) Inhibition of mTOR alleviates early brain injury after subarachnoid hemorrhage via relieving excessive mitochondrial fission. Cell Mol Neurobiol 40:629–642

    Article  CAS  Google Scholar 

  30. Harjes U, Bridges E, McIntyre A, Fielding B, Harris A (2014) Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem 289:23168–23176

    Article  CAS  Google Scholar 

  31. Kevil C, Orr A, Langston W, Mickett K, Murphy-Ullrich J, Patel R, Kucik D, Bullard D (2004) Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem 279:19230–19238

    Article  CAS  Google Scholar 

  32. Ruiz S, Zhao H, Chandakkar P, Papoin J, Choi H, Nomura-Kitabayashi A, Patel R, Gillen M, Diao L, Chatterjee P et al (2020) Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models. J Clin Investig 130:942–957

    Article  CAS  Google Scholar 

  33. Zhao Y, Adjei A (2014) The clinical development of MEK inhibitors. Nat Rev Clin Oncol 11:385–400

    Article  CAS  Google Scholar 

  34. Chelliah M, Do H, Zinn Z, Patel V, Jeng M, Khosla R, Truong M, Marqueling A, Teng J (2018) Management of complex arteriovenous malformations using a novel combination therapeutic algorithm. JAMA Dermatol 154:1316–1319

    Article  Google Scholar 

  35. Govindarajan V, Burks J, Luther E, Thompson J, Starke R (2021) Medical adjuvants in the treatment of surgically refractory arteriovenous malformations of the head and face: case report and review of literature. Cerebrovasc Dis 50:493–499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Debin Yan wants to thank the invaluable support received from Kaihong Zheng over the years.

Funding

This study was funded by the National Natural Science Foundation of China (H0906 81571110 and 82071302 to Yuanli Zhao), National Key Research and Development Program of China (2020YFC2004701 to Xiaolin Chen), Beijing Natural Science Foundation (7204253 to Qiang Hao), Beijing Municipal Hospital Cultivation Program (pX2020023 to Qiang Hao), and Hainan Science and Technology Project (ZDYF2021SHFZ111 to Hao Peng).

Author information

Authors and Affiliations

Authors

Contributions

YLZ designed the whole experiment. DBY and QH participated in the whole procedure. DZ and XLC provided the AVM tissues, YC, ZPL, HBZ, KXY, RNL, RTL, YHZ, and HP took part in the collection of AVM tissues and discussion. All authors consent to participate and publication.

Corresponding authors

Correspondence to Dong Zhang, Xiaolin Chen or Yuanli Zhao.

Ethics declarations

Ethics approval

This experiment was approved by the Beijing Tian Tan Hospital Ethics Committee (Beijing, China) (KYSQ 2020–038-01).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Debin Yan and Qiang Hao have contributed equally to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Hao, Q., Chen, Y. et al. mTOR-FABP4 signal is activated in brain arteriovenous malformations in humans. J Mol Med 100, 1287–1297 (2022). https://doi.org/10.1007/s00109-022-02237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-022-02237-9

Keywords

Navigation