Skip to main content
Log in

Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Tay-Sachs disease (TSD) is a lethal lysosomal storage disease (LSD) caused by mutations in the HexA gene, which can lead to deficiency of β-hexosaminidase A (HexA) activity and consequent accumulation of its substrate, GM2 ganglioside. Recent reports that progranulin (PGRN) functions as a chaperone of lysosomal enzymes and its deficiency is associated with LSDs, including Gaucher disease and neuronal ceroid lipofuscinosis, prompted us to screen the effects of recombinant PGRN on lysosomal storage in fibroblasts from 11 patients affected by various LSDs, which led to the isolation of TSD in which PGRN demonstrated the best effects in reducing lysosomal storage. Subsequent in vivo studies revealed significant GM2 accumulation and the existence of typical TSD cells containing zebra bodies in both aged and ovalbumin-challenged adult PGRN-deficient mice. In addition, HexA, but not HexB, was aggregated in PGRN-deficient cells. Furthermore, recombinant PGRN significantly reduced GM2 accumulation and lysosomal storage in these animal models. Mechanistic studies indicated that PGRN bound to HexA through granulins G and E domain and increased the enzymatic activity and lysosomal delivery of HexA. More importantly, Pcgin, an engineered PGRN derivative bearing the granulin E domain, also effectively bound to HexA and reduced the GM2 accumulation. Collectively, these studies not only provide new insights into the pathogenesis of TSD but may also have implications for developing PGRN-based therapy for this life-threatening disorder.

Key messages

  • GM2 accumulation and the existence of typical TSD cells containing zebra bodies are detected in both aged and ovalbumin-challenged adult PGRN deficient mice.

  • Recombinant PGRN significantly reduces GM2 accumulation and lysosomal storage both in vivo and in vitro, which works through increasing the expression and lysosomal delivery of HexA.

  • Pcgin, an engineered PGRN derivative bearing the granulin E domain, also effectively binds to to HexA and reduces GM2 accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sandhoff K (2016) Neuronal sphingolipidoses: membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism. Biochimie 130:146–151

    Article  CAS  Google Scholar 

  2. Anheuser S, Breiden B, Schwarzmann G, Sandhoff K (2015) Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity. J Lipid Res 56(9):1747–1761

    Article  CAS  Google Scholar 

  3. Fernandes Filho JA, Shapiro BE (2004) Tay-Sachs disease. Arch Neurol 61(9):1466–1468

    Article  Google Scholar 

  4. Kaback MM, Desnick RJ (1993) Hexosaminidase A deficiency. In: Adam MP, Ardinger HH, Pagon RA et al. (eds) GeneReviews(R), Seattle,WA

  5. Vallance H, Ford J (2003) Carrier testing for autosomal-recessive disorders. Crit Rev Clin Lab Sci 40(4):473–497

    Article  CAS  Google Scholar 

  6. Lew RM, Burnett L, Proos AL, Delatycki MB (2015) Tay-Sachs disease: current perspectives from Australia. Appl Clin Genet 8:19–25

    Article  CAS  Google Scholar 

  7. Jeyakumar M, Butters TD, Dwek RA, Platt FM (2002) Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28(5):343–357

    Article  CAS  Google Scholar 

  8. Matsuoka K, Tamura T, Tsuji D, Dohzono Y, Kitakaze K, Ohno K, Saito S, Sakuraba H, Itoh K (2011) Therapeutic potential of intracerebroventricular replacement of modified human beta-hexosaminidase B for GM2 gangliosidosis. Mol Ther 19(6):1017–1024

    Article  CAS  Google Scholar 

  9. Rountree JS, Butters TD, Wormald MR, Boomkamp SD, Dwek RA, Asano N, Ikeda K, Evinson EL, Nash RJ, Fleet GW (2009) Design, synthesis, and biological evaluation of enantiomeric beta-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. ChemMedChem 4(3):378–392

    Article  CAS  Google Scholar 

  10. Shapiro BE, Pastores GM, Gianutsos J, Luzy C, Kolodny EH (2009) Miglustat in late-onset Tay-Sachs disease: a 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet Med 11(6):425–433

    Article  CAS  Google Scholar 

  11. Fu W, Hu W, Shi L, Mundra JJ, Xiao G, Dustin ML, Liu CJ (2017) Foxo4- and Stat3-dependent IL-10 production by progranulin in regulatory T cells restrains inflammatory arthritis. FASEB J 31(4):1354–1367

    Article  CAS  Google Scholar 

  12. Jian J, Konopka J, Liu C (2013) Insights into the role of progranulin in immunity, infection, and inflammation. J Leukoc Biol 93(2):199–208

    Article  CAS  Google Scholar 

  13. Jones EE, Zhang W, Zhao X, Quiason C, Dale S, Shahidi-Latham S, Grabowski GA, Setchell KDR, Drake RR, Sun Y (2017) Tissue localization of glycosphingolipid accumulation in a Gaucher disease mouse brain by LC-ESI-MS/MS and high-resolution MALDI imaging mass spectrometry. SLAS Discov 22(10):1218–1228

    CAS  PubMed  Google Scholar 

  14. Williams A, Wang EC, Thurner L, Liu CJ (2016) Review: novel insights into tumor necrosis factor receptor, death receptor 3, and Progranulin pathways in arthritis and bone remodeling. Arthritis Rheum 68(12):2845–2856

    Article  CAS  Google Scholar 

  15. Zhao YP, Liu B, Tian QY, Wei JL, Richbourgh B, Liu CJ (2015) Progranulin protects against osteoarthritis through interacting with TNF-alpha and beta-catenin signalling. Ann Rheum Dis 74(12):2244–2253

    Article  CAS  Google Scholar 

  16. Wang BC, Liu H, Talwar A, Jian J (2015) New discovery rarely runs smooth: an update on progranulin/TNFR interactions. Protein Cell 6(11):792–803

    Article  Google Scholar 

  17. Yu Y, Xu X, Liu L, Mao S, Feng T, Lu Y, Cheng Y, Wang H, Zhao W, Tang W (2016) Progranulin deficiency leads to severe inflammation, lung injury and cell death in a mouse model of endotoxic shock. J Cell Mol Med 20(3):506–517

    Article  CAS  Google Scholar 

  18. Liu CJ, Bosch X (2012) Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther 133(1):124–132

    Article  CAS  Google Scholar 

  19. He Z, Ong CH, Halper J, Bateman A (2003) Progranulin is a mediator of the wound response. Nat Med 9(2):225–229

    Article  CAS  Google Scholar 

  20. Zhao C, Bateman A (2015) Progranulin protects against the tissue damage of acute ischaemic stroke. Brain 138(Pt 7):1770–1773

    Article  Google Scholar 

  21. Johnson J, Yeter K, Rajbhandary R, Neal R, Tian Q, Jian J, Fadle N, Thurner L, Liu C, Stohl W (2017) Serum progranulin levels in Hispanic rheumatoid arthritis patients treated with TNF antagonists: a prospective, observational study. Clin Rheumatol 36(3):507–516

    Article  Google Scholar 

  22. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, Syed NM, Lai Y, Lin EA, Kong L et al (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332(6028):478–484

    Article  CAS  Google Scholar 

  23. Tian Q, Zhao S, Liu C (2014) A solid-phase assay for studying direct binding of progranulin to TNFR and progranulin antagonism of TNF/TNFR interactions. Methods Mol Biol 1155:163–172

    Article  CAS  Google Scholar 

  24. Wei F, Zhang Y, Zhao W, Yu X, Liu CJ (2014) Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions. PLoS One 9(11):e112110

    Article  Google Scholar 

  25. Wei J, Hettinghouse A, Liu C (2016) The role of progranulin in arthritis. Ann N Y Acad Sci 1383:5–20

    Article  CAS  Google Scholar 

  26. Zhao YP, Tian QY, Frenkel S, Liu CJ (2013) The promotion of bone healing by progranulin, a downstream molecule of BMP-2, through interacting with TNF/TNFR signaling. Biomaterials 34(27):6412–6421

    Article  CAS  Google Scholar 

  27. Zhao YP, Tian QY, Liu CJ (2013) Progranulin deficiency exaggerates, whereas progranulin-derived Atsttrin attenuates, severity of dermatitis in mice. FEBS Lett 587(12):1805–1810

    Article  CAS  Google Scholar 

  28. Jian J, Zhao S, Tian QY, Liu H, Zhao Y, Chen WC, Grunig G, Torres PA, Wang BC, Zeng B et al (2016) Association between Progranulin and Gaucher disease. EBioMedicine 11:127–137

    Article  Google Scholar 

  29. Jian J, Tian QY, Hettinghouse A, Zhao S, Liu H, Wei J, Grunig G, Zhang W, Setchell KDR, Sun Y et al (2016) Progranulin recruits HSP70 to beta-glucocerebrosidase and is therapeutic against Gaucher disease. EBioMedicine 13:212–224

    Article  Google Scholar 

  30. Choy FYM, Christensen CL (2016) Progranulin as a novel factor in Gaucher disease. EBioMedicine 13:13–14

    Article  Google Scholar 

  31. Jian J, Hettinghouse A, Liu CJ (2017) Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes. Genes Dis 4(3):125–126

    Article  CAS  Google Scholar 

  32. Wei F, Zhang Y, Jian J, Mundra JJ, Tian Q, Lin J, Lafaille JJ, Tang W, Zhao W, Yu X et al (2014) PGRN protects against colitis progression in mice in an IL-10 and TNFR2 dependent manner. Sci Rep 4:7023

    Article  CAS  Google Scholar 

  33. Feng JQ, Guo FJ, Jiang BC, Zhang Y, Frenkel S, Wang DW, Tang W, Xie Y, Liu CJ (2010) Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J 24(6):1879–1892

    Article  CAS  Google Scholar 

  34. Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran D (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff patients. J Biol Chem 279(14):13478–13487

    Article  CAS  Google Scholar 

  35. Wendeler M, Sandhoff K, Glycoconj J (2009) Hexosaminidase assays. Glycoconj J 26:945–952

    Article  CAS  Google Scholar 

  36. Park SH, Chen WC, Esmaeil N, Lucas B, Marsh LM, Reibman J, Grunig G (2014) Interleukin 13- and interleukin 17A-induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution. Pulm Circ 4(4):654–668

    Article  Google Scholar 

  37. Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, Saftig P, Van Damme P (2017) Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet 26(15):2850–2863

    Article  CAS  Google Scholar 

  38. Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C et al (2010) Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463(7280):549–553

    Article  CAS  Google Scholar 

  39. Stromme P, Mansson JE, Scott H, Skullerud K, Hovig T (1997) Encephaloneuropathy with lysosomal zebra bodies and GM2 ganglioside storage. Pediatr Neurol 16(2):141–144

    Article  CAS  Google Scholar 

  40. Hrabal R, Chen Z, James S, Bennett HP, Ni F (1996) The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Biol 3(9):747–752

    Article  CAS  Google Scholar 

  41. Tian QY, Zhao YP, Liu CJ (2012) Modified yeast-two-hybrid system to identify proteins interacting with the growth factor progranulin. J Vis Exp (59). doi:https://doi.org/10.3791/3562

  42. Tian Q, Zhao Y, Mundra JJ, Gonzalez-Gugel E, Jian J, Uddin SM, Liu C (2014) Three TNFR-binding domains of PGRN act independently in inhibition of TNF-alpha binding and activity. Front Biosci 19:1176–1185

    Article  CAS  Google Scholar 

  43. Mundra JJ, Jian J, Bhagat P, Liu CJ (2016) Progranulin inhibits expression and release of chemokines CXCL9 and CXCL10 in a TNFR1 dependent manner. Sci Rep 6:21115

    Article  CAS  Google Scholar 

  44. Jian J, Li G, Hettinghouse A, Liu C (2016) Progranulin: a key player in autoimmune diseases. Cytokine 101:48–55

    Article  Google Scholar 

  45. Li M, Liu Y, Xia F, Wu Z, Deng L, Jiang R, Guo FJ (2014) Progranulin is required for proper ER stress response and inhibits ER stress-mediated apoptosis through TNFR2. Cell Signal 26(7):1539–1548

    Article  CAS  Google Scholar 

  46. Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M (2014) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun 2:78. https://doi.org/10.1186/s40478-014-0078-x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Evers BM, Rodriguez-Navas C, Tesla RJ, Prange-Kiel J, Wasser CR, Yoo KS, McDonald J, Cenik B, Ravenscroft TA, Plattner F et al (2017) Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Rep 20(11):2565–2574

    Article  CAS  Google Scholar 

  48. Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR (2003) The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J 22(24):6430–6437

    Article  CAS  Google Scholar 

  49. Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J, Yu X, Wuertzer CA, Hou H, Chiba S et al (2010) Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol 177(1):311–324

    Article  CAS  Google Scholar 

  50. Walkley SU, Vanier MT (2009) Secondary lipid accumulation in lysosomal disease. Biochim Biophys Acta 1793(4):726–736

    Article  CAS  Google Scholar 

  51. Gass J, Lee WC, Cook C, Finch N, Stetler C, Jansen-West K, Lewis J, Link CD, Rademakers R, Nykjaer A et al (2012) Progranulin regulates neuronal outgrowth independent of sortilin. Mol Neurodegener 7:33

    Article  CAS  Google Scholar 

  52. Frebel K, Wiese S, Funk N, Puhringer D, Sendtner M (2007) Differential modulation of neurite growth by the S- and the L-forms of bag1, a co-chaperone of Hsp70. Neurodegener Dis 4(2–3):261–269

    Article  CAS  Google Scholar 

  53. Dersh D, Iwamoto Y, Argon Y (2016) Tay-Sachs disease mutations in HEXA target the alpha chain of hexosaminidase a to endoplasmic reticulum-associated degradation. Mol Biol Cell 27(24):3813–3827

    Article  CAS  Google Scholar 

  54. Clarke JT, Mahuran DJ, Sathe S, Kolodny EH, Rigat BA, Raiman JA, Tropak MB (2011) An open-label phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants). Mol Genet Metab 102(1):6–12

    Article  CAS  Google Scholar 

  55. Tropak MB, Mahuran D (2007) Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase A activity in GM2 gangliosidosis cells. FEBS J 274(19):4951–4961

    Article  CAS  Google Scholar 

  56. Osher E, Fattal-Valevski A, Sagie L, Urshanski N, Sagiv N, Peleg L, Lerman-Sagie T, Zimran A, Elstein D, Navon R et al (2015) Effect of cyclic, low dose pyrimethamine treatment in patients with late onset Tay Sachs: an open label, extended pilot study. Orphanet J Rare Dis 10:45. https://doi.org/10.1186/s13023-015-0260-7

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kato A, Nakagome I, Nakagawa S, Kinami K, Adachi I, Jenkinson SF, Desire J, Bleriot Y, Nash RJ, Fleet GWJ et al (2017) In silico analyses of essential interactions of iminosugars with the Hex A active site and evaluation of their pharmacological chaperone effects for Tay-Sachs disease. Org Biomol Chem 15:9297–9304

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported partly by NIH research grants 1R01NS103931, R01AR062207, and R01AR061484 and a DOD research grant W81XWH-16-1-0482. Yuehong Chen was funded by China Scholarship Council (grant number 201606240021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-ju Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jian, J., Hettinghouse, A. et al. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med 96, 1359–1373 (2018). https://doi.org/10.1007/s00109-018-1703-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1703-0

Keywords

Navigation