Skip to main content

Advertisement

Log in

Epigenetic regulation of Toll-like receptors and its roles in type 1 diabetes

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The immune system can be divided into adaptive immunity and innate immunity. Adaptive immunity has been confirmed to be involved in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However, the role of innate immunity in T1D has only been studied recently. T1D is caused by selective autoimmune destruction of pancreatic islet β cells. A series of studies have suggested that TLRs play a critical role in the pathogenesis of T1D. Aberrant TLR signaling will change immune homeostasis and result in immunopathological conditions such as endotoxin shock and autoimmune responses. Thus, TLR signaling pathways are supposed to be strictly and finely regulated. Epigenetics has recently been proven to be a new regulator of TLR expression. DNA methylation, histone modification, and microRNAs are the three main epigenetic modifications. This review will mainly focus on these epigenetic mechanisms of regulation of TLRs and the role of TLRs in the pathogenesis of T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    Article  PubMed  CAS  Google Scholar 

  2. Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300:1524–1525

    Article  PubMed  CAS  Google Scholar 

  3. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    Article  PubMed  CAS  Google Scholar 

  4. Qian C, Cao X (2013) Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci 1283:67–74

    Article  PubMed  CAS  Google Scholar 

  5. Haehnel V, Schwarzfischer L, Fenton MJ, Rehli M (2002) Transcriptional regulation of the human toll-like receptor 2 gene in monocytes and macrophages. J Immunol 168:5629–5637

    Article  PubMed  CAS  Google Scholar 

  6. Morse ZJ, Horwitz MS (2017) Innate viral receptor signaling determines type 1 diabetes onset. Front Endocrinol (Lausanne) 8:249. https://doi.org/10.3389/fendo.2017.00249

    Article  Google Scholar 

  7. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82

    Article  PubMed  Google Scholar 

  8. Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47:174–192

    Article  PubMed  CAS  Google Scholar 

  9. Liu Y, Yin H, Zhao M, Lu Q (2014) TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 47:136–147

    Article  PubMed  CAS  Google Scholar 

  10. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  11. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  PubMed  CAS  Google Scholar 

  13. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    Article  PubMed  CAS  Google Scholar 

  14. Muzio M, Bosisio D, Polentarutti N, D'Amico G, Stoppacciaro A, Mancinelli R, van't Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004

    Article  PubMed  CAS  Google Scholar 

  15. Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wen L, Peng J, Li Z, Wong FS (2004) The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J Immunol 172:3173–3180

    Article  PubMed  CAS  Google Scholar 

  17. Zarember KA, Godowski PJ (2002) Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561

    Article  PubMed  CAS  Google Scholar 

  18. Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442:39–44

    Article  PubMed  CAS  Google Scholar 

  19. Alisi A, Carsetti R, Nobili V (2011) Pathogen- or damage-associated molecular patterns during nonalcoholic fatty liver disease development. Hepatology 54:1500–1502

    Article  PubMed  CAS  Google Scholar 

  20. Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG (2006) The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7:1074–1081

    Article  PubMed  CAS  Google Scholar 

  21. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  CAS  Google Scholar 

  22. Brodsky I, Medzhitov R (2007) Two modes of ligand recognition by TLRs. Cell 130:979–981

    Article  PubMed  CAS  Google Scholar 

  23. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13:460–469

    Article  PubMed  CAS  Google Scholar 

  24. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  25. Zipris D (2008) Innate immunity and its role in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 15:326–331

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  PubMed  CAS  Google Scholar 

  27. Montero Vega MT, de Andres Martin A (2009) The significance of toll-like receptors in human diseases. Allergol Immunopathol (Madr) 37:252–263

    Article  CAS  Google Scholar 

  28. Liew FY, Xu D, Brint EK, O'Neill LA (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5:446–458

    Article  PubMed  CAS  Google Scholar 

  29. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  30. Borgel J, Guibert S, Li Y, Chiba H, Schubeler D, Sasaki H, Forne T, Weber M (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100

    Article  PubMed  CAS  Google Scholar 

  31. Magalhaes M, Rivals I, Claustres M, Varilh J, Thomasset M, Bergougnoux A, Mely L, Leroy S, Corvol H, Guillot L, Murris M, Beyne E, Caimmi D, Vachier I, Chiron R, De Sario A (2017) DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis. Clin Epigenetics 9:19. https://doi.org/10.1186/s13148-016-0300-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Smith AK, Conneely KN, Kilaru V, Mercer KB, Weiss TE, Bradley B, Tang Y, Gillespie CF, Cubells JF, Ressler KJ (2011) Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 156B:700–708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Johnson CM, Tapping RI (2007) Microbial products stimulate human Toll-like receptor 2 expression through histone modification surrounding a proximal NF-kappaB-binding site. J Biol Chem 282:31197–31205

    Article  PubMed  CAS  Google Scholar 

  34. Thakur BK, Dasgupta N, Ta A, Das S (2016) Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res 44:5658–5672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zampetaki A, Xiao Q, Zeng L, Hu Y, Xu Q (2006) TLR4 expression in mouse embryonic stem cells and in stem cell-derived vascular cells is regulated by epigenetic modifications. Biochem Biophys Res Commun 347:89–99

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi K, Sugi Y, Hosono A, Kaminogawa S (2009) Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J Immunol 183:6522–6529

    Article  PubMed  CAS  Google Scholar 

  37. Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, Choe YK, Lee HG (2016) Epigenetic modification of TLR4 promotes activation of NF-kappaB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget 7:4195–4209

    PubMed  Google Scholar 

  38. McKernan DP, Hennessy C (2017) Epigenetic modifications influence TLR3 expression and activity. FASEB J 31:1060.1065–1060.1065

    Google Scholar 

  39. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  PubMed  CAS  Google Scholar 

  41. O'Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  CAS  Google Scholar 

  42. Fabbri M, Paone A, Calore F, Galli R, Croce CM (2013) A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol 10:169–174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Olivieri F, Rippo MR, Prattichizzo F, Babini L, Graciotti L, Recchioni R, Procopio AD (2013) Toll like receptor signaling in “inflammaging”: microRNA as new players. Immun Ageing 10:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. He S, Chu J, Wu LC, Mao H, Peng Y, Alvarez-Breckenridge CA, Hughes T, Wei M, Zhang J, Yuan S, Sandhu S, Vasu S, Benson DM Jr, Hofmeister CC, He X, Ghoshal K, Devine SM, Caligiuri MA, Yu J (2013) MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood 121:4663–4671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ, Zanesi N, Crawford M, Ozer GH, Wernicke D, Alder H, Caligiuri MA, Nana-Sinkam P, Perrotti D, Croce CM (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116

    Article  PubMed  PubMed Central  Google Scholar 

  46. He WA, Calore F, Londhe P, Canella A, Guttridge DC, Croce CM (2014) Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci U S A 111:4525–4529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kalin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835

    Article  PubMed  CAS  Google Scholar 

  48. Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, Ji RR (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Philippe L, Alsaleh G, Suffert G, Meyer A, Georgel P, Sibilia J, Wachsmann D, Pfeffer S (2012) TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 188:454–461

    Article  PubMed  CAS  Google Scholar 

  50. Benakanakere MR, Li Q, Eskan MA, Singh AV, Zhao J, Galicia JC, Stathopoulou P, Knudsen TB, Kinane DF (2009) Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J Biol Chem 284:23107–23115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Guo H, Chen Y, Hu X, Qian G, Ge S, Zhang J (2013) The regulation of Toll-like receptor 2 by miR-143 suppresses the invasion and migration of a subset of human colorectal carcinoma cells. Mol Cancer 12:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jiang C, Zhu W, Xu J, Wang B, Hou W, Zhang R, Zhong N, Ning Q, Han Y, Yu H, Sun J, Meng L, Lu S (2014) MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res Ther 16:R9

    Article  PubMed  PubMed Central  Google Scholar 

  53. Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris AN, Tsichlis PN, Tsatsanis C (2009) The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 31:220–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Agudo J, Ruzo A, Tung N, Salmon H, Leboeuf M, Hashimoto D, Becker C, Garrett-Sinha LA, Baccarini A, Merad M, Brown BD (2014) The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids. Nat Immunol 15:54–62

    Article  PubMed  CAS  Google Scholar 

  55. Huang G, Xiang Y, Pan L, Li X, Luo S, Zhou Z (2013) Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes Metab Res Rev 29:363–368

    Article  PubMed  CAS  Google Scholar 

  56. Zhou Z, Xiang Y, Ji L, Jia W, Ning G, Huang G, Yang L, Lin J, Liu Z, Hagopian WA, Leslie RD, Group LCS (2013) Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62:543–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu L, Li X, Xiang Y, Huang G, Lin J, Yang L, Zhao Y, Yang Z, Hou C, Li Y, Liu J, Zhu D, Leslie RD, Wang X, Zhou Z, Group LCS (2015) Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China study 3). Diabetes Care 38:16–21

    Article  PubMed  CAS  Google Scholar 

  58. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10:501–513

    Article  PubMed  CAS  Google Scholar 

  59. Devaraj S, Dasu MR, Park SH, Jialal I (2009) Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52:1665–1668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Devaraj S, Dasu MR, Rockwood J, Winter W, Griffen SC, Jialal I (2008) Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state. J Clin Endocrinol Metab 93:578–583

    Article  PubMed  CAS  Google Scholar 

  61. Du T, Zhou ZG, You S, Lin J, Yang L, Zhou WD, Huang G, Chao C (2009) Regulation by 1, 25-dihydroxy-vitamin D3 on altered TLRs expression and response to ligands of monocyte from autoimmune diabetes. Clin Chim Acta 402:133–138

    Article  PubMed  CAS  Google Scholar 

  62. Zheng C, Zhou Z, Yang L, Lin J, Huang G, Li X, Zhou W, Wang X, Liu Z (2011) Fulminant type 1 diabetes mellitus exhibits distinct clinical and autoimmunity features from classical type 1 diabetes mellitus in Chinese. Diabetes Metab Res Rev 27:70–78

    Article  PubMed  CAS  Google Scholar 

  63. Shibasaki S, Imagawa A, Tauriainen S, Iino M, Oikarinen M, Abiru H, Tamaki K, Seino H, Nishi K, Takase I, Okada Y, Uno S, Murase-Mishiba Y, Terasaki J, Makino H, Shimomura I, Hyoty H, Hanafusa T (2010) Expression of toll-like receptors in the pancreas of recent-onset fulminant type 1 diabetes. Endocr J 57:211–219

    Article  PubMed  CAS  Google Scholar 

  64. Wang Z, Zheng Y, Hou C, Yang L, Li X, Lin J, Huang G, Lu Q, Wang CY, Zhou Z (2013) DNA methylation impairs TLR9 induced Foxp3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–59

    Article  PubMed  CAS  Google Scholar 

  65. Vallois D, Grimm CH, Avner P, Boitard C, Rogner UC (2007) The type 1 diabetes locus Idd6 controls TLR1 expression. J Immunol 179:3896–3903

    Article  PubMed  CAS  Google Scholar 

  66. Alyanakian MA, Grela F, Aumeunier A, Chiavaroli C, Gouarin C, Bardel E, Normier G, Chatenoud L, Thieblemont N, Bach JF (2006) Transforming growth factor-beta and natural killer T-cells are involved in the protective effect of a bacterial extract on type 1 diabetes. Diabetes 55:179–185

    Article  PubMed  CAS  Google Scholar 

  67. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Paun A, Yau C, Danska JS (2017) The influence of the microbiome on type 1 diabetes. J Immunol 198:590–595

    Article  PubMed  CAS  Google Scholar 

  69. Yiu JH, Dorweiler B, Woo CW (2017) Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med (Berl) 95:13–20

    Article  CAS  Google Scholar 

  70. Amiset L, Fend L, Gatard-Scheikl T, Rittner K, Duong V, Rooke R, Muller S, Bonnefoy JY, Preville X, Haegel H (2012) TLR2 ligation protects effector T cells from regulatory T-cell mediated suppression and repolarizes T helper responses following MVA-based cancer immunotherapy. Oncoimmunology 1:1271–1280

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wong FS, Wen L (2008) Toll-like receptors and diabetes. Ann N Y Acad Sci 1150:123–132

    Article  PubMed  CAS  Google Scholar 

  72. Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK (2005) Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 175:8051–8059

    Article  PubMed  CAS  Google Scholar 

  73. Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE, von Herrath MG (2011) TLR2 signaling improves immunoregulation to prevent type 1 diabetes. Eur J Immunol 41:1399–1409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Karumuthil-Melethil S, Perez N, Li R, Vasu C (2008) Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J Immunol 181:8323–8334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Chen Q, Davidson TS, Huter EN, Shevach EM (2009) Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T cells, but promotes their survival. J Immunol 183:4458–4466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Al Shamsi M, Shahin A, Iwakura Y, Lukic ML, Mensah-Brown EP (2013) Pam3CSK(4) enhanced beta cell loss and diabetogenesis: the roles of IFN-gamma and IL-17. Clin Immunol 149:86–96

    Article  PubMed  CAS  Google Scholar 

  77. Ewel CH, Sobel DO, Zeligs BJ, Bellanti JA (1992) Poly I:C accelerates development of diabetes mellitus in diabetes-prone BB rat. Diabetes 41:1016–1021

    Article  PubMed  CAS  Google Scholar 

  78. Sobel DO, Goyal D, Ahvazi B, Yoon JW, Chung YH, Bagg A, Harlan DM (1998) Low dose poly I:C prevents diabetes in the diabetes prone BB rat. J Autoimmun 11:343–352

    Article  PubMed  CAS  Google Scholar 

  79. Sobel DO, Newsome J, Ewel CH, Bellanti JA, Abbassi V, Creswell K, Blair O (1992) Poly I:C induces development of diabetes mellitus in BB rat. Diabetes 41:515–520

    Article  PubMed  CAS  Google Scholar 

  80. Guberski DL, Thomas VA, Shek WR, Like AA, Handler ES, Rossini AA, Wallace JE, Welsh RM (1991) Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science 254:1010–1013

    Article  PubMed  CAS  Google Scholar 

  81. Zipris D, Lien E, Nair A, Xie JX, Greiner DL, Mordes JP, Rossini AA (2007) TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol 178:693–701

    Article  PubMed  CAS  Google Scholar 

  82. Zipris D, Lien E, Xie JX, Greiner DL, Mordes JP, Rossini AA (2005) TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J Immunol 174:131–142

    Article  PubMed  CAS  Google Scholar 

  83. Tirabassi RS, Guberski DL, Blankenhorn EP, Leif JH, Woda BA, Liu Z, Winans D, Greiner DL, Mordes JP (2010) Infection with viruses from several families triggers autoimmune diabetes in LEW*1WR1 rats: prevention of diabetes by maternal immunization. Diabetes 59:110–118

    Article  PubMed  CAS  Google Scholar 

  84. Pirie FJ, Pegoraro R, Motala AA, Rauff S, Rom L, Govender T, Esterhuizen TM (2005) Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes. Tissue Antigens 66:125–130

    Article  PubMed  CAS  Google Scholar 

  85. Assmann TS, Brondani Lde A, Bauer AC, Canani LH, Crispim D (2014) Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus. Eur J Endocrinol 170:519–527

    Article  PubMed  CAS  Google Scholar 

  86. Park Y, Park S, Yoo E, Kim D, Shin H (2004) Association of the polymorphism for Toll-like receptor 2 with type 1 diabetes susceptibility. Ann N Y Acad Sci 1037:170–174

    Article  PubMed  CAS  Google Scholar 

  87. Bjørnvold M, Munthe-Kaas MC, Egeland T, Joner G, Dahl-Jorgensen K, Njolstad PR, Akselsen HE, Gervin K, Carlsen KC, Carlsen KH, Undlien DE (2009) A TLR2 polymorphism is associated with type 1 diabetes and allergic asthma. Genes Immun 10:181–187

    Article  PubMed  CAS  Google Scholar 

  88. Santin I, Bilbao JR, de Nanclares GP, Calvo B, Castano L (2006) No association of TLR2 and TLR4 polymorphisms with type I diabetes mellitus in the Basque population. Ann N Y Acad Sci 1079:268–272

    Article  PubMed  Google Scholar 

  89. Dezsofi A, Szebeni B, Hermann CS, Kapitany A, Veres G, Sipka S, Korner A, Madacsy L, Korponay-Szabo I, Rajczy K, Arato A (2008) Frequencies of genetic polymorphisms of TLR4 and CD14 and of HLA-DQ genotypes in children with celiac disease, type 1 diabetes mellitus, or both. J Pediatr Gastroenterol Nutr 47:283–287

    Article  PubMed  CAS  Google Scholar 

  90. Sun C, Zhi D, Shen S, Luo F, Sanjeevi CB (2014) SNPs in the exons of Toll-like receptors are associated with susceptibility to type 1 diabetes in Chinese population. Hum Immunol 75:1084–1088

    Article  PubMed  CAS  Google Scholar 

  91. Uciechowski P, Imhoff H, Lange C, Meyer CG, Browne EN, Kirsten DK, Schroder AK, Schaaf B, Al-Lahham A, Reinert RR, Reiling N, Haase H, Hatzmann A, Fleischer D, Heussen N, Kleines M, Rink L (2011) Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. J Leukoc Biol 90:377–388

    Article  PubMed  CAS  Google Scholar 

  92. Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI (2007) Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178:7520–7524

    Article  PubMed  CAS  Google Scholar 

  93. Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368

    Article  PubMed  CAS  Google Scholar 

  94. Bednar KJ, Ridgway WM (2014) Targeting innate immunity for treatment of type 1 diabetes. Immunotherapy 6:1239–1242

    Article  PubMed  CAS  Google Scholar 

  95. Needell JC, Zipris D (2017) Targeting innate immunity for type 1 diabetes prevention. Curr Diab Rep 17:113. https://doi.org/10.1007/s11892-017-0930-z

    Article  PubMed  CAS  Google Scholar 

  96. Bednar KJ, Tsukamoto H, Kachapati K, Ohta S, Wu Y, Katz JD, Ascherman DP, Ridgway WM (2015) Reversal of new-onset type 1 diabetes with an agonistic TLR4/MD-2 monoclonal antibody. Diabetes 64:3614–3626

    Article  PubMed  CAS  Google Scholar 

  97. Hara N, Alkanani AK, Dinarello CA, Zipris D (2014) Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes. J Mol Med (Berl) 92:93–102

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key Research and Development Program of China (2016YFC1305000), the National Natural Science Foundation of China (No. 81400783), the National Key Technology R&D program (2015BAI12B13), and the strategic forerunner project of Central South University (ZLXD2016003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Huang, G., Wang, Z. et al. Epigenetic regulation of Toll-like receptors and its roles in type 1 diabetes. J Mol Med 96, 741–751 (2018). https://doi.org/10.1007/s00109-018-1660-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-018-1660-7

Keywords

Navigation