Skip to main content
Log in

Abstract

Of the total human body’s surface, the majority is internal surface, belonging to the lungs (100 m2) and intestinal tract (400 m2). In comparison, the external surface area, belonging to the skin, comprises less than 1% (2 m2). Continuous exposure of the mucosal surface to external factors (e.g., pathogens, food particles) requires tight regulation to maintain homeostasis. MicroRNAs (miRNAs) have gained noticeable attention as playing important roles in maintaining the steady-state of tissues by modulating immune functions and inflammatory responses. Accordingly, associations have been found between miRNA expression levels and human health conditions and diseases. These findings have important implications in inflammatory diseases involving pulmonary and intestinal mucosa, such as acute lung injury or inflammatory bowel disease. In this review, we highlight the known biology of miRNAs and discuss the role of miRNAs in modulating mucosal defense and homeostasis. Additionally, we discuss miRNAs serving as potential therapeutic targets to treat immunological conditions, particularly mucosal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  2. Rebane A, Akdis CA (2013) MicroRNAs: essential players in the regulation of inflammation. J Allergy Clin Immunol 132:15–26

    Article  CAS  PubMed  Google Scholar 

  3. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17:1391–1401

    Article  CAS  PubMed  Google Scholar 

  4. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  7. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  8. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  9. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo Z, Wu R, Gong J, Zhu W, Li Y, Wang Z, Li N, Li J (2015) Altered microRNA expression in inflamed and non-inflamed terminal ileal mucosa of adult patients with active Crohn’s disease. J Gastroenterol Hepatol 30:109–116

    Article  CAS  PubMed  Google Scholar 

  11. Schembri F, Sridhar S, Perdomo C, Gustafson AM, Zhang X, Ergun A, Lu J, Liu G, Bowers J, Vaziri C et al (2009) MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A 106:2319–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chassin C, Hempel C, Stockinger S, Dupont A, Kübler JF, Wedemeyer J, Vandewalle A, Hornef MW (2012) MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury. EMBO Mol Med 4:1308–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai X, Chen X, Chen Q, Shi L, Liang H, Zhou Z, Liu Q, Pang W, Hou D, Wang C et al (2015) MicroRNA-193a-3p reduces intestinal inflammation in response to microbiota via down-regulation of colonic PepT1. J Biol Chem 290:16099–16115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H, Dong L, Zhang C, Zeng K, Chen J et al (2014) miR-141 regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn’s disease. Gut 63:1247–1257

    Article  CAS  PubMed  Google Scholar 

  15. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  17. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  18. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  19. Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31

    Article  CAS  PubMed  Google Scholar 

  20. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  21. miRBase21 (2014), http://www.mirbase.org/

  22. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Obernosterer G, Leuschner PJ, Alenius M, Martinez J (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, Kiledjian M (2010) Differential regulation of microRNA stability. RNA 16:1032–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, Irving AT, Behlke MA, Hertzog PJ, Mackay F et al (2011) Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 39:5692–5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Müller-Tidow C, Bohlander SK, Tenen DG, Behre G (2010) Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 115:1768–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831

    Article  CAS  PubMed  Google Scholar 

  29. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  CAS  PubMed  Google Scholar 

  30. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581

    Article  CAS  PubMed  Google Scholar 

  31. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104:9667–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  CAS  Google Scholar 

  33. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  34. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282

    CAS  PubMed  Google Scholar 

  38. O'Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  CAS  Google Scholar 

  39. Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123:1057–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sheedy FJ, O'Neill LA (2008) Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis 67(Suppl 3):iii50–iii55

    Article  CAS  PubMed  Google Scholar 

  41. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eckmann L, Jung HC, Schürer-Maly C, Panja A, Morzycka-Wroblewska E, Kagnoff MF (1993) Differential cytokine expression by human intestinal epithelial cell lines: regulated expression of interleukin 8. Gastroenterology 105:1689–1697

    Article  CAS  PubMed  Google Scholar 

  43. Standiford TJ, Kunkel SL, Basha MA, Chensue SW, Lynch JP, Toews GB, Westwick J, Strieter RM (1990) Interleukin-8 gene expression by a pulmonary epithelial cell line. A model for cytokine networks in the lung. J Clin Invest 86:1945–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin FJ, Prince AS (2008) TLR2 regulates gap junction intercellular communication in airway cells. J Immunol 180:4986–4993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN, Bowers BE, Bayless AJ, Scully M, Saeedi BJ, Golden-Mason L et al (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dengler V, Downey GP, Tuder RM, Eltzschig HK, Schmidt EP (2013) Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. Am J Respir Cell Mol Biol 49:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573

    CAS  PubMed  Google Scholar 

  48. Gasser O, Schifferli JA (2004) Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–2548

    Article  CAS  PubMed  Google Scholar 

  49. Zemans RL, McClendon J, Aschner Y, Briones N, Young SK, Lau LF, Kahn M, Downey GP (2013) Role of beta-catenin-regulated CCN matricellular proteins in epithelial repair after inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol 304:L415–L427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rossi GA, Sacco O, Balbi B, Oddera S, Mattioni T, Corte G, Ravazzoni C, Allegra L (1990) Human ciliated bronchial epithelial cells: expression of the HLA-DR antigens and of the HLA-DR alpha gene, modulation of the HLA-DR antigens by gamma-interferon and antigen-presenting function in the mixed leukocyte reaction. Am J Respir Cell Mol Biol 3:431–439

    Article  CAS  PubMed  Google Scholar 

  51. Gereke M, Jung S, Buer J, Bruder D (2009) Alveolar type II epithelial cells present antigen to CD4(+) T cells and induce Foxp3(+) regulatory T cells. Am J Respir Crit Care Med 179:344–355

    Article  PubMed  Google Scholar 

  52. Hershberg RM, Cho DH, Youakim A, Bradley MB, Lee JS, Framson PE, Nepom GT (1998) Highly polarized HLA class II antigen processing and presentation by human intestinal epithelial cells. J Clin Invest 102:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Westendorf AM, Fleissner D, Groebe L, Jung S, Gruber AD, Hansen W, Buer J (2009) CD4+Foxp3+ regulatory T cell expansion induced by antigen-driven interaction with intestinal epithelial cells independent of local dendritic cells. Gut 58:211–219

    Article  CAS  PubMed  Google Scholar 

  54. Pickard KM, Bremner AR, Gordon JN, MacDonald TT (2004) Microbial-gut interactions in health and disease. Immune responses. Best Pract Res Clin Gastroenterol 18:271–285

    Article  CAS  PubMed  Google Scholar 

  55. Beck JM, Young VB, Huffnagle GB (2012) The microbiome of the lung. Transl Res 160:258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sze MA, Dimitriu PA, Hayashi S, Elliott WM, McDonough JE, Gosselink JV, Cooper J, Sin DD, Mohn WW, Hogg JC (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A, Poulter L, Pachter L et al (2010) Disordered microbial communities in asthmatic airways. PLoS One 5:e8578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Yi R, O'Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E (2006) Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38:356–362

    Article  CAS  PubMed  Google Scholar 

  59. Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci U S A 103:2208–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hino K, Fukao T, Watanabe M (2007) Regulatory interaction of HNF1-alpha to microRNA-194 gene during intestinal epithelial cell differentiation. Nucleic Acids Symp Ser (Oxf) :415–416. doi:10.1093/nass/nrm208

  61. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang Y, Ma Y, Shi C, Chen H, Zhang H, Chen N, Zhang P, Wang F, Yang J, Zhu Q et al (2013) Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the rho GTPase RhoB. Biochem Biophys Res Commun 434:746–752

    Article  CAS  PubMed  Google Scholar 

  63. Ye D, Guo S, Al-Sadi R, Ma TY (2011) MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141:1323–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451:1125–1129

    Article  CAS  PubMed  Google Scholar 

  65. Polytarchou C, Hommes DW, Palumbo T, Hatziapostolou M, Koutsioumpa M, Koukos G, van der Meulen-de Jong AE, Oikonomopoulos A, van Deen WK, Vorvis C et al (2015) MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterology 149:981–992.e911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai ZG, Zhang SM, Zhang Y, Zhou YY, Wu HB, Xu XP (2012) MicroRNAs are dynamically regulated and play an important role in LPS-induced lung injury. Can J Physiol Pharmacol 90:37–43

    Article  CAS  PubMed  Google Scholar 

  67. Runtsch MC, Hu R, Alexander M, Wallace J, Kagele D, Petersen C, Valentine JF, Welker NC, Bronner MP, Chen X et al (2015) MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget 6:28556–28572

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li L, Zhang H, Min D, Zhang R, Wu J, Qu H, Tang Y (2015) Sox9 activation is essential for the recovery of lung function after acute lung injury. Cell Physiol Biochem 37:1113–1122

    Article  CAS  PubMed  Google Scholar 

  69. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D et al (2010) Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182:220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liang H, Gu Y, Li T, Zhang Y, Huangfu L, Hu M, Zhao D, Chen Y, Liu S, Dong Y et al (2014) Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis. Cell Death Dis 5:e1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liang H, Xu C, Pan Z, Zhang Y, Xu Z, Chen Y, Li T, Li X, Liu Y, Huangfu L et al (2014) The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther 22:1122–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180:5689–5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8:240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pugin J, Schürer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 90:2744–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schulz C, Farkas L, Wolf K, Kratzel K, Eissner G, Pfeifer M (2002) Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand J Immunol 56:294–302

    Article  CAS  PubMed  Google Scholar 

  76. Zhai Y, Zhong Z, Chen CY, Xia Z, Song L, Blackburn MR, Shyu AB (2008) Coordinated changes in mRNA turnover, translation, and RNA processing bodies in bronchial epithelial cells following inflammatory stimulation. Mol Cell Biol 28:7414–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, Zapol WM, Bloch KD, Iliopoulos D (2012) Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 303:L199–L207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang C, Xiao X, Chintagari NR, Breshears M, Wang Y, Liu L (2014) MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome. BMC Med Genet 7:46

    Google Scholar 

  79. Rao R, Rieder SA, Nagarkatti P, Nagarkatti M (2014) Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infect Immun 82:2971–2979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lee SM, Choi H, Yang G, Park KC, Jeong S, Hong S (2014) microRNAs mediate oleic acid-induced acute lung injury in rats using an alternative injury mechanism. Mol Med Rep 10:292–300

    CAS  PubMed  Google Scholar 

  81. Tan KS, Choi H, Jiang X, Yin L, Seet JE, Patzel V, Engelward BP, Chow VT (2014) Micro-RNAs in regenerating lungs: an integrative systems biology analysis of murine influenza pneumonia. BMC Genomics 15:587

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ke XF, Fang J, Wu XN, Yu CH (2014) MicroRNA-203 accelerates apoptosis in LPS-stimulated alveolar epithelial cells by targeting PIK3CA. Biochem Biophys Res Commun 450:1297–1303

    Article  CAS  PubMed  Google Scholar 

  83. Otsuki T, Ishikawa M, Hori Y, Goto G, Sakamoto A (2015) Volatile anesthetic sevoflurane ameliorates endotoxin-induced acute lung injury via microRNA modulation in rats. Biomed Rep 3:408–412

    PubMed  PubMed Central  Google Scholar 

  84. Xiao J, Tang J, Chen Q, Tang D, Liu M, Luo M, Wang Y, Wang J, Zhao Z, Tang C et al (2015) miR-429 regulates alveolar macrophage inflammatory cytokine production and is involved in LPS-induced acute lung injury. Biochem J 471:281–291

    Article  CAS  PubMed  Google Scholar 

  85. Xie L, Zhou J, Zhang S, Chen Q, Lai R, Ding W, Song C, Meng X, Wu J (2014) Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung. Radiat Oncol 9:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bhaskaran M, Xi D, Wang Y, Huang C, Narasaraju T, Shu W, Zhao C, Xiao X, More S, Breshears M et al (2012) Identification of microRNAs changed in the neonatal lungs in response to hyperoxia exposure. Physiol Genomics 44:970–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yehya N, Yerrapureddy A, Tobias J, Margulies SS (2012) MicroRNA modulate alveolar epithelial response to cyclic stretch. BMC Genomics 13:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tamarapu Parthasarathy P, Galam L, Huynh B, Yunus A, Abuelenen T, Castillo A, Kollongod Ramanathan G, Cox R, Kolliputi N (2012) MicroRNA 16 modulates epithelial sodium channel in human alveolar epithelial cells. Biochem Biophys Res Commun 426:203–208

    Article  CAS  PubMed  Google Scholar 

  89. Zhou X, Li X, Ye Y, Zhao K, Zhuang Y, Li Y, Wei Y, Wu M (2014) MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun 5:3619

    PubMed  PubMed Central  Google Scholar 

  90. McAdams RM, Bierle CJ, Boldenow E, Weed S, Tsai J, Beyer RP, MacDonald JW, Bammler TK, Liggitt HD, Farin FM et al (2015) Choriodecidual group B streptococcal infection induces miR-155-5p in the fetal lung in Macaca nemestrina. Infect Immun 83:3909–3917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao J, Li X, Zou M, He J, Han Y, Wu D, Yang H, Wu J (2014) miR-135a inhibition protects A549 cells from LPS-induced apoptosis by targeting Bcl-2. Biochem Biophys Res Commun 452:951–957

    Article  CAS  PubMed  Google Scholar 

  92. Leuenberger C, Schuoler C, Bye H, Mignan C, Rechsteiner T, Hillinger S, Opitz I, Marsland B, Faiz A, Hiemstra PS et al (2016) MicroRNA-223 controls the expression of histone deacetylase 2: a novel axis in COPD. J Mol Med (Berl) 94:725–734

    Article  CAS  Google Scholar 

  93. Dorhoi A, Iannaccone M, Farinacci M, Faé KC, Schreiber J, Moura-Alves P, Nouailles G, Mollenkopf HJ, Oberbeck-Müller D, Jörg S et al (2013) MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123:4836–4848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Horowitz JC, Thannickal VJ (2006) Epithelial-mesenchymal interactions in pulmonary fibrosis. Semin Respir Crit Care Med 27:600–612

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wilson MS, Wynn TA (2009) Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2:103–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamada M, Kubo H, Ota C, Takahashi T, Tando Y, Suzuki T, Fujino N, Makiguchi T, Takagi K, Ichinose M (2013) The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respir Res 14:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fernandez IE, Eickelberg O (2012) The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9:111–116

    Article  CAS  PubMed  Google Scholar 

  99. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, Brant SR, Chakravarti S, Kwon JH (2008) MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 135:1624–1635.e1624

    Article  CAS  PubMed  Google Scholar 

  100. Takagi T, Naito Y, Mizushima K, Hirata I, Yagi N, Tomatsuri N, Ando T, Oyamada Y, Isozaki Y, Hongo H et al (2010) Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol 25(Suppl 1):S129–S133

    Article  CAS  PubMed  Google Scholar 

  101. Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, Brant SR, Kwon JH (2010) Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis 16:1729–1738

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schaefer JS, Attumi T, Opekun AR, Abraham B, Hou J, Shelby H, Graham DY, Streckfus C, Klein JR (2015) MicroRNA signatures differentiate Crohn’s disease from ulcerative colitis. BMC Immunol 16:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Szűcs D, Béres NJ, Rokonay R, Boros K, Borka K, Kiss Z, Arató A, Szabó AJ, Vannay Á, Sziksz E et al (2016) Increased duodenal expression of miR-146a and -155 in pediatric Crohn’s disease. World J Gastroenterol 22:6027–6035

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, Taganov KD, Zhao JL, Baltimore D (2012) miR-146a controls the resolution of T cell responses in mice. J Exp Med 209:1655–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D, Rudensky AY (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142:914–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Neudecker V, Haneklaus M, Jensen O, Khailova L, Masterson JC, Tye H, Biette K, Jedlicka P, Brodsky KS, Gerich ME et al (2017) Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med DOI. doi:10.1084/jem.20160462

  107. Bian Z, Li L, Cui J, Zhang H, Liu Y, Zhang CY, Zen K (2011) Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol 225:544–553

    Article  CAS  PubMed  Google Scholar 

  108. Min M, Peng L, Yang Y, Guo M, Wang W, Sun G (2014) MicroRNA-155 is involved in the pathogenesis of ulcerative colitis by targeting FOXO3a. Inflamm Bowel Dis 20:652–659

    Article  PubMed  Google Scholar 

  109. Zhao Y, Ma T, Chen W, Chen Y, Li M, Ren L, Chen J, Cao R, Feng Y, Zhang H et al (2016) MicroRNA-124 promotes intestinal inflammation by targeting aryl hydrocarbon receptor in Crohn’s disease. J Crohns Colitis 10:703–712

    Article  PubMed  Google Scholar 

  110. Fernández-Messina L, Gutiérrez-Vázquez C, Rivas-García E, Sánchez-Madrid F, de la Fuente H (2015) Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol Cell DOI. doi:10.1111/boc.201400081

  111. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  112. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González M, Bernad A, Sánchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM, O'Connell RM (2015) Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 6:7321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ayyadurai S, Charania MA, Xiao B, Viennois E, Zhang Y, Merlin D (2014) Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, plays an important role in cell-to-cell communication during colitis. PLoS One 9:e87614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694

    Article  CAS  PubMed  Google Scholar 

  117. Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D (2014) Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13:2352–2360

    Article  CAS  PubMed  Google Scholar 

  118. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, Sohn-Lee C, le Sage C, Agami R, Tuschl T et al (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23:1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chung AC, Huang XR, Meng X, Lan HY (2010) miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc Nephrol 21:1317–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Neudecker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neudecker, V., Yuan, X., Bowser, J.L. et al. MicroRNAs in mucosal inflammation. J Mol Med 95, 935–949 (2017). https://doi.org/10.1007/s00109-017-1568-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1568-7

Keywords

Navigation