Skip to main content

Advertisement

Log in

DNA hypermethylation of sFRP5 contributes to indoxyl sulfate-induced renal fibrosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Renal fibrosis is the most common outcome of chronic kidney disease (CKD), while the pathogenesis of renal fibrosis is not fully understood. In this study, we first showed that the progress of renal fibrosis was positively related to serum levels of indoxyl sulfate, a typical protein-bound toxin, and that there was a close correlation between serum indoxyl sulfate levels and β-catenin expression in the kidneys (r = 0.908, p < 0.001) of CKD patients. We then demonstrated that intraperitoneal injections of indoxyl sulfate (100 mg/kg/day) for 4 weeks in uninephrectomized mice explicitly induced renal fibrosis, which was accompanied by a significant activation of Wnt/β-catenin signaling. In vitro investigations in human renal tubular HK-2 cells revealed that indoxyl sulfate exhibited a potent ability to induce Wnt/β-catenin activation through the downregulation of sFRP5, a gene that codes for an extracellular antagonist of Wnt signaling, by increasing the DNA methylation level of its promoter CpG islands. The increased expression of DNA methyltransferases following the activation of ROS/ERK1/2 signaling was responsible for the DNA hypermethylation of sFRP5 induced by indoxyl sulfate. Conversely, treatment with 5-aza-2′-deoxycytidine, an inhibitor of DNA methyltransferases, significantly reduced indoxyl sulfate-induced sFRP5 downregulation and Wnt/β-catenin activation. In vivo, intraperitoneal injections of recombinant sFRP5 protein or 5-aza-2′-deoxycytidine substantially alleviated renal fibrosis in indoxyl sulfate-treated uninephrectomized mice. Our results suggest that indoxyl sulfate promotes renal fibrosis through the induction of DNA hypermethylation of sFRP5, and thereafter the activation of Wnt/β-catenin signaling. These findings provide new insights into the pathogenesis of renal fibrosis in CKD patients.

Key messages

  • IS induces renal fibrosis by increasing ß-catenin expression in CKD mice.

  • IS-induced Wnt signaling activation is due to sFRP5 hypermethylation in HK-2 cells.

  • ROS/ERK1/2 signaling activation is involved in IS-induced sFRP5 hypermethylation.

  • sFRP5 upregulation attenuates IS-induced renal fibrosis by inhibiting Wnt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am SocNephrol 17(1):17–25

    CAS  Google Scholar 

  2. Zeisberg M, Neilson EG (2010) Mechanisms of tubulointerstitial fibrosis. J Am SocNephrol 21(11):1819–1834

    CAS  Google Scholar 

  3. Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20(1):1–17

    Article  CAS  PubMed  Google Scholar 

  4. Ruiz-Ortega M, Egido J (1997) Angiotensin II modulates cell growth-related events and synthesis of matrix proteins in renal interstitial fibroblasts. Kidney Int 52(6):1497–1510

    Article  CAS  PubMed  Google Scholar 

  5. Chade AR, Mushin OP, Zhu X, Rodriguez-Porcel M, Grande JP, Textor SC, Lerman A, Lerman LO (2005) Pathways of renal fibrosis and modulation of matrix turnover in experimental hypercholesterolemia. Hypertension 46(4):772–779

    Article  CAS  PubMed  Google Scholar 

  6. Lin CL, Wang JY, Ko JY, Huang YT, Kuo YH, Wang FS (2010) Dickkopf-1 promotes hyperglycemia-induced accumulation of mesangial matrix and renal dysfunction. J Am SocNephrol 21(1):124–135

    CAS  Google Scholar 

  7. Kim J, Seok YM, Jung KJ, Park KM (2009) Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 297(2):F461–F470

    Article  CAS  PubMed  Google Scholar 

  8. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A, European Uremic Toxin Work Group (2012) Normal and pathologic concentrations of uremic toxins. J Am SocNephrol 23:1258–1270

    CAS  Google Scholar 

  9. Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, Wu MS (2012) Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients-a prospective cohort study. Nephrol Dial Transplant 27:1169–1175

    Article  CAS  PubMed  Google Scholar 

  10. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, VanholderR MZA, European Uremic Toxin Work Group (EUTox) (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am SocNephrol 4(10):1551–1558

    Article  CAS  Google Scholar 

  11. Lekawanvijit S, Adrahtas A, Kelly DJ, Kompa AR, Wang BH, Krum H (2010) Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiacfibroblasts and myocytes? Eur Heart J 31(14):1771–1779

    Article  CAS  PubMed  Google Scholar 

  12. Lin CJ, Pan CF, Liu HL, Chuang CK, Jayakumar T, Wang TJ, Chen HH, Wu CJ (2012) The role of protein-bound uremic toxins on peripheral artery disease and vascular access failure in patients on hemodialysis. Atherosclerosis 225(1):173–179

    Article  CAS  PubMed  Google Scholar 

  13. Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M, Noguchi T, Kadowaki D, Ishima Y, Kotani S et al (2013) p-Cresyl sulfate causes renaltubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int 83(4):582–592

    Article  CAS  PubMed  Google Scholar 

  14. Sun CY, Hsu HH, Wu MS (2013) p-Cresol sulfate and indoxylsulfate induce similar cellular inflammatory gene expressions in cultured proximal renaltubular cells. Nephrol Dial Transplant 28(1):70–78

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu H, Bolati D, Adijiang A, Muteliefu G, Enomoto A, Nishijima F, Dateki M, Niwa T (2011) NF-κB plays an important role in indoxylsulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am J Physiol Cell Physiol 301(5):C1201–C1212

    Article  CAS  PubMed  Google Scholar 

  16. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am SocNephrol 20(4):765–776

    CAS  Google Scholar 

  17. Surendran K, Schiavi S, Hruska KA (2005) Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J Am SocNephrol 16(8):2373–2384

    CAS  Google Scholar 

  18. Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC, Rudikoff S, Aaronson SA, Varmus HE, Rubin JS (1997) Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A 94(13):6770–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xie Q, Chen L, Shan X, Shan X, Tang J, Zhou F, Chen Q, Quan H, Nie D, Zhang W et al (2014) Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signalling pathway. Int J Cancer 135:635–646

    Article  CAS  PubMed  Google Scholar 

  20. Saito T, Mitomi H, Imamhasan A, Hayashi T, Mitani K, Takahashi M, Kajiyama Y, Yao T (2014) Downregulation of sFRP-2 by epigenetic silencing activates the β-catenin/Wnt signaling pathway in esophageal basaloid squamous cell carcinoma. Virchows Arch 464(2):135–143

    Article  CAS  PubMed  Google Scholar 

  21. Stenvinkel P, Karimi M, Johansson S, Axelsson J, Suliman M, Lindholm B, Heimbürger O, Barany P, Alvestrand A, Nordfors L et al (2007) Impact of inflammationon epigenetic DNA methylation–a novel risk factor for cardiovascular disease? J Intern Med 261(1):488–499

    Article  CAS  PubMed  Google Scholar 

  22. Hori Y, Oda Y, Kiyoshima K, Yamada Y, Nakashima Y, Naito S, Tsuneyoshi M (2007) Oxidative stress and DNA hypermethylation status in renal cell carcinoma arising in patients on dialysis. J Pathol 212(2):218–226

    Article  CAS  PubMed  Google Scholar 

  23. Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81(7):640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G (2014) The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am SocNephrol 25(9):1897–1907

    CAS  Google Scholar 

  25. Yang K, Wang C, Nie L, Zhao X, Gu J, Guan X, Wang S, Xiao T, Xu X, He T et al (2015) Klotho protects against IS-induced myocardial hypertrophy. J Am Soc Nephrol 26(10):2434–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grigoryan T, Wend P, Klaus A, Birchmeier W (2008) Deciphering the function of canonical Wnt signals indevelopment and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 22(17):2308–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He W, Tan RJ, Li Y, Wang D, Nie J, Hou FF, Liu Y (2012) Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/beta-catenin activity in CKD. J Am Soc Nephrol 23(2):294–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nelson PJ, von Toerne C, Gröne HJ (2011) Wnt-signaling pathways in progressive renal fibrosis. Expert OpinTher Targets 15(9):1073–1083

    Article  CAS  Google Scholar 

  29. Zhou L, Li Y, Zhou D, Tan RJ, Liu Y (2013) Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol 24(5):771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, Hou FF, Kahn M, Liu Y (2015) Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 26(1):107–120

    Article  CAS  PubMed  Google Scholar 

  31. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA (2006) Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 25(23):5603–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA (1999) Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J Biol Chem 274(23):16180–16187

    Article  CAS  PubMed  Google Scholar 

  33. Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJ, Arfuso F, Fox SA, Dharmarajan AM, Kumar AP (2014) Secreted frizzled related proteins: implications in cancers. Biochim Biophys Acta 1845(1):53–65

    CAS  PubMed  Google Scholar 

  34. Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C (2006) Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 25(31):4361–4369

    Article  CAS  PubMed  Google Scholar 

  35. Horvath LG, Henshall SM, Kench JG, Saunders DN, Lee CS, Golovsky D, Brenner PC, O’Neill GF, Kooner R, Stricker PD et al (2004) Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular proliferation in vitro. Clin Cancer Res 10(2):615–625

    Article  CAS  PubMed  Google Scholar 

  36. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M (2014) Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem 289(45):31526–31533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaur P, Mani S, Cros MP, Scoazec JY, Chemin I, Hainaut P, Herceg Z (2012) Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma. Tumour Biol 33(2):325–336

    Article  CAS  PubMed  Google Scholar 

  38. Perry AS, O’Hurley G, Raheem OA, Brennan K, Wong S, O’Grady A, Kennedy AM, Marignol L, Murphy TM, Sullivan L et al (2013) Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer 132(8):1771–1780

    Article  CAS  PubMed  Google Scholar 

  39. Ouchi N, Higuchi A, Ohashi K, Oshima Y, Gokce N, Shibata R, Akasaki Y, Shimono A, Walsh K (2010) Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329:454–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao C, Bu X, Wang W, Ma T, Ma H (2014) GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation. PLoS One 9(1):e85058

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimbürger O, Massy Z (2008) Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am SocNephrol 3(2):505–521

    Article  CAS  Google Scholar 

  42. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, Vacca M, D’Esposito M, D’Urso M, Galletti P et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361(9370):1693–1699

    Article  CAS  PubMed  Google Scholar 

  43. Jiang Y, Sun T, Xiong J, Cao J, Li G, Wang S (2007) Hyperhomocysteinemia-mediated DNA hypomethylation and its potential epigenetic role in rats. Acta Biochim Biophys Sin Shanghai 39(9):657–667

    Article  CAS  PubMed  Google Scholar 

  44. Rossi M, Campbell KL, Johnson DW, Stanton T, Vesey DA, Coombes JS, Weston KS, Hawley CM, McWhinney BC, Ungerer JP et al (2014) Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3-4 chronic kidney disease. Arch Med Res 45(4):309–317

    Article  CAS  PubMed  Google Scholar 

  45. Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K, Changotade S (2014) Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem 62(10):751–758

    Article  PubMed  Google Scholar 

  46. Zhao YY, Chen H, Tian T, Chen DQ, Bai X, Wei F (2014) A pharmaco-metabonomic study on chronic kidney disease and therapeutic effect of ergone by UPLC-QTOF/HDMS. PLoS One 9(12):e115467

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guan X, Nie L, He T, Yang K, Xiao T, Wang S, Huang Y, Zhang J, Wang J, Sharma K (2014) Klotho suppresses renal tubulo-interstitial fibrosis by controlling basic fibroblast growth factor-2 signalling. J Pathol 234(4):560–572

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the National Natural Science Foundation of China (Nos. 81500567, 81500544, 81270290, and 81400747) and the project for Chongqing basic science and advanced technology research (cstc2015jcyjBX0028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Zhao.

Ethics declarations

The study protocol was approved by the Ethics Committee of Xinqiao Hospital and carried out in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Guan, X., Nie, L. et al. DNA hypermethylation of sFRP5 contributes to indoxyl sulfate-induced renal fibrosis. J Mol Med 95, 601–613 (2017). https://doi.org/10.1007/s00109-017-1538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1538-0

Keywords

Navigation