Skip to main content

Advertisement

Log in

Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Autophagy prevents cellular damage by eliminating insoluble aggregates of mutant misfolded proteins, which accumulate under different pathological conditions. Downregulation of autophagy enhances the inflammatory response and thus represents a possible common pathogenic event underlying a number of autoinflammatory syndromes, such as tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS). The pathogenesis of other monogenic or complex disorders that display symptoms of excessive inflammation also involve the autophagy pathway. Studies have shown that TRAPS-associated TNFRSF1A mutations induce cytoplasmic retention of the TNFR1 receptor, defective TNF-induced apoptosis, and production of reactive oxygen species (ROS). Furthermore, autophagy impairment may account for the pathogenic effects of TNFRSF1A mutations, thus inducing inflammation in TRAPS. In this review, we summarize the molecular interactions and functional links between autophagy with regard to nuclear factor-kappa B activation, ROS production, and apoptosis. Furthermore, we propose a complex interplay of these pathways as a model to explain the relationship between mutant protein misfolding and inflammation in genetically determined and aggregation-prone diseases. Accordingly, autophagy function should be investigated in all diseases showing an inflammatory component, and for which the molecular pathogenesis is still unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Williamson LM, Hull D, Mehta R, Reeves WG, Robinson BH, Toghill PJ (1982) Familial Hibernian fever. QJ Med 51:469–480

    CAS  Google Scholar 

  2. Dodé C, André M, Bienvenu T, Hausfater P, Pêcheux C, Bienvenu J, Lecron JC, Reinert P, Cattan D, Piette JC et al (2002) The enlarging clinical, genetic, and population spectrum of tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 46:2181–2188

    Article  PubMed  Google Scholar 

  3. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144

    Article  CAS  PubMed  Google Scholar 

  4. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ (2000) A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288:2351–2354

    Article  CAS  PubMed  Google Scholar 

  5. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504

    Article  CAS  PubMed  Google Scholar 

  6. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  CAS  PubMed  Google Scholar 

  7. Christofferson DE, Li Y, Yuan J (2013) Control of life-or-death decisions by RIP1 Kinase. Annu Rev Physiol, in press

  8. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  9. Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308

    Article  CAS  PubMed  Google Scholar 

  10. Turner MD, Chaudhry A, Nedjai B (2011) Tumour necrosis factor receptor trafficking dysfunction opens the TRAPS door to pro-inflammatory cytokine secretion. Biosci Rep 32:105–112

    Article  PubMed Central  Google Scholar 

  11. Cantarini L, Lucherini OM, Muscari I, Frediani B, Galeazzi M, Brizi MG, Simonini G, Cimaz R (2012) Tumour necrosis factor receptor-associated periodic syndrome (TRAPS): state of the art and future perspectives. Autoimmun Rev 12:38–43

    Article  CAS  PubMed  Google Scholar 

  12. Todd I, Radford PM, Daffa N, Bainbridge SE, Powell RJ, Tighe PJ (2007) Mutant tumor necrosis factor receptor associated with tumor necrosis factor receptor-associated periodic syndrome is altered antigenically and is retained within patients' leukocytes. Arthritis Rheum 56:2765–2773

    Article  CAS  PubMed  Google Scholar 

  13. Lobito AA, Kimberley FC, Muppidi JR, Komarow H, Jackson AJ, Hull KM, Kastner DL, Screaton GR, Siegel RM (2006) Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108:1320–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Simon A, Park H, Maddipati R, Lobito AA, Bulua AC, Jackson AJ, Chae JJ, Ettinger R, de Koning HD, Cruz AC et al (2010) Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A 107:9801–9806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tanaka K, Mizushima T, Saeki Y (2012) The proteasome: molecular machinery and pathophysiological roles. Biol Chem 393:217–234

    Article  CAS  PubMed  Google Scholar 

  16. Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14:70–77

    Article  PubMed  Google Scholar 

  17. Bachetti T, Chiesa S, Castagnola P, Bani D, Di Zanni E, Omenetti A, D'Osualdo A, Fraldi A, Ballabio A, Ravazzolo R et al (2013) Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 72:1044–1052

    Article  CAS  PubMed  Google Scholar 

  18. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  PubMed  Google Scholar 

  19. Harris J, Hartman M, Roche C, Zeng SG, O'Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286:9587–9597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Leah E (2012) Pathology: autophagy defect traps mutant TNF receptor in TRAPS. Nat Rev Rheumatol 8:691

    Article  PubMed  Google Scholar 

  21. Rosello A, Warnes G, Meier UC (2012) Cell death pathways and autophagy in the central nervous system and its involvement in neurodegeneration, immunity and central nervous system infection: to die or not to die—that is the question. Clin Exp Immunol 168:52–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL (1994) A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369:756–758

    Article  CAS  PubMed  Google Scholar 

  23. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yue Z, Jin S, Yang S, Levine AJ, Heintz N (2003) BECLIN-1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  28. Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis and cancer. Cell 137:1001–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differ 18:571–580

    Article  CAS  Google Scholar 

  30. Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  31. Kunsch C, Ruben SM, Rosen CA (1992) Selection of optimal kappa B/Rel DNAbinding motifs: interaction of both subunits of NF-kappa B with DNA is required for transcriptional activation. Mol Cell Biol 12:4412–4421

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Churchman SM, Church LD, Savic S, Coulthard LR, Hayward B, Nedjai B, Turner MD, Mathews RJ, Baguley E, Hitman GA et al (2008) A novel TNFRSF1A splice mutation associated with increased NF-{kappa}B transcription factor activation in patients with TNF-receptor associated periodic syndrome (TRAPS). Ann Rheum Dis 67:1589–1595

    Article  CAS  PubMed  Google Scholar 

  33. Nedjai B, Hitman GA, Quillinan N, Coughlan RJ, Church L, McDermott MF, Turner MD (2009) Proinflammatory action of the antiinflammatory drug infliximab in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 60:619–625

    Article  CAS  PubMed  Google Scholar 

  34. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald (2012) Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–256

    Article  CAS  PubMed  Google Scholar 

  36. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12:419–429

    Article  CAS  PubMed  Google Scholar 

  37. Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J (1999) The interaction of p62 with RIP links the atypical PKCs to NF-kB activation. EMBO J 18:3044–3053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lee J, Kim HR, Quinley C, Kim J, Gonzalez-Navajas J, Xavier R, Raz E (2012) Autophagy suppresses interleukin-1β (IL-1β) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. J Biol Chem 287:4033–4040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269

    Article  CAS  PubMed  Google Scholar 

  40. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besançon F, Bauvy C, Codogno P (2007) Regulation of autophagy by NFkappaB transcription factor and reactives oxygen species. Autophagy 3:390–392

    CAS  PubMed  Google Scholar 

  41. Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29:2594–2608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nedjai B, Hitman GA, Church LD, Minden K, Whiteford ML, McKee S, Stjernberg S, Pettersson T, Ranki A, Hawkins PN et al (2011) Differential cytokine secretion results from p65 and c-Rel NF-κB subunit signaling in peripheral blood mononuclear cells of TNF receptor-associated periodic syndrome patients. Cell Immunol 268:55–59

    Article  CAS  PubMed  Google Scholar 

  43. Li D (2006) Selective degradation of the IkappaB kinase (IKK) by autophagy. Cell Res 16:855–856

    Article  CAS  PubMed  Google Scholar 

  44. Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D (2012) SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun 427:191–196

    Article  CAS  PubMed  Google Scholar 

  45. Vernon PJ, Tang D (2013) Eat-me: autophagy, phagocytosis, and reactive oxygen species signaling. Antioxid Redox Signal 18:677–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36:30–38

    Article  CAS  PubMed  Google Scholar 

  47. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  48. Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20:1589–1598

    Article  CAS  PubMed  Google Scholar 

  49. Ozsoy HZ, Sivasubramanian N, Wieder ED, Pedersen S, Mann DL (2008) Oxidative stress promotes ligand-independent and enhanced ligand-dependent tumor necrosis factor receptor signaling. J Biol Chem 283:23419–23428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yousaf N, Gould DJ, Aganna E, Hammond L, Mirakian RM, Turner MD, Hitman GA, McDermott MF, Chernajovsky Y (2005) Tumor necrosis factor receptor I from patients with tumor necrosis factor receptor-associated periodic syndrome interacts with wild-type tumor necrosis factor receptor I and induces ligand-independent NF-kappaB activation. Arthritis Rheum 52:2906–2916

    Article  CAS  PubMed  Google Scholar 

  51. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9:2277–2293

    Article  CAS  PubMed  Google Scholar 

  52. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY, Sack MN, Kastner DL, Siegel RM (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Dickie LJ, Aziz AM, Savic S, Lucherini OM, Cantarini L, Geiler J, Wong CH, Coughlan R, Lane T, Lachmann HJ et al (2012) Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann Rheum Dis 71:2035–2043

    Article  CAS  PubMed  Google Scholar 

  55. Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Fujino G (2007) Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol Cell Biol 27:8152–8163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Piette J, Piret B, Bonizzi G, Schoonbroodt S, Merville MP, Legrand-Poels S, Bours V (1997) Multiple redox regulation in NF-kappaB transcription factor activation. Biol Chem 378:1237–1245

    CAS  PubMed  Google Scholar 

  58. Bouloumie A, Marumo T, Lafontan M, Busse R (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J 13:1231–1238

    CAS  PubMed  Google Scholar 

  59. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    Article  CAS  PubMed  Google Scholar 

  60. Crişan TO, Plantinga TS, van de Veerdonk FL, Farcaş MF, Stoffels M, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG (2011) Inflammasome-independent modulation of cytokine response by autophagy in human cells. PLoS One 6:e18666

    Article  PubMed Central  PubMed  Google Scholar 

  61. Siebert S, Amos N, Fielding CA, Wang EC, Aksentijevich I, Williams BD, Brennan P (2005) Reduced tumor necrosis factor signaling in primary human fibroblasts containing a tumor necrosis factor receptor superfamily 1A mutant. Arthritis Rheum 52:1287–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. D'Osualdo A, Ferlito F, Prigione I, Obici L, Meini A, Zulian F, Pontillo A, Corona F, Barcellona R, Di Duca M et al (2006) Neutrophils from patients with TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis: pathogenetic and clinical implications. Arthritis Rheum 54:998–1008

    Article  PubMed  Google Scholar 

  63. Ricci A, Cherubini E, Scozzi D, Pietrangeli V, Tabbì L, Raffa S, Leone L, Visco V, Torrisi MR, Bruno P et al (2013) Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts. J Cell Physiol 228:1516–1524

    Article  CAS  PubMed  Google Scholar 

  64. Jia L, Dourmashkin RR, Allen PD, Gray AB, Newland AC, Kelsey SM (1997) Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br J Haematol 98:673–685

    Article  CAS  PubMed  Google Scholar 

  65. Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S, Gozuacik D (2012) Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death. Apoptosis 17:810–820

    Article  CAS  PubMed  Google Scholar 

  67. Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6:1042–1056

    Article  CAS  PubMed  Google Scholar 

  68. Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A 86:2336–2340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT, Moscat J (2005) The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem 280:35625–35629

    Article  CAS  PubMed  Google Scholar 

  70. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996) TRAF6 is a signal transducer for interleukin-1. Nature 383:443–446

    Article  CAS  PubMed  Google Scholar 

  71. Gattorno M, Pelagatti MA, Meini A, Obici L, Barcellona R, Federici S, Buoncompagni A, Plebani A, Merlini G, Martini A (2008) Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58:1516–1520

    Article  CAS  PubMed  Google Scholar 

  72. Sacré K, Brihaye B, Lidove O, Papo T, Pocidalo MA, Cuisset L, Dodé C (2008) Dramatic improvement following interleukin 1beta blockade in tumor necrosis factor receptor-1-associated syndrome (TRAPS) resistant to anti-TNF-alpha therapy. J Rheumatol 35:357–358

    PubMed  Google Scholar 

  73. Pelagatti MA, Meini A, Caorsi R, Cattalini M, Federici S, Zulian F, Calcagno G, Tommasini A, Bossi G, Sormani MP et al (2011) Long-term clinical profile of children with the low-penetrance R92Q mutation of the TNFRSF1A gene. Arthritis Rheum 63:1141–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Obici L, Meini A, Cattalini M, Chicca S, Galliani M, Donadei S, Plebani A, Merlini G (2011) Favourable and sustained response to anakinra in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) with or without AA amyloidosis. Ann Rheum Dis 70:1511–1512

    Article  CAS  PubMed  Google Scholar 

  75. Vaitla PM, Radford PM, Tighe PJ, Powell RJ, McDermott EM, Todd I, Drewe E (2011) Role of interleukin-6 in a patient with tumor necrosis factor receptor-associated periodic syndrome: assessment of outcomes following treatment with the anti-interleukin-6 receptor monoclonal antibody tocilizumab. Arthritis Rheum 63:1151–1155

    Article  PubMed  Google Scholar 

  76. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 30:4701–4711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Di Zanni E, Ceccherini I, Bachetti T (2011) Toward a therapeutic strategy for polyalanine expansions disorders: in vivo and in vitro models for drugs analysis. Eur J Paediatr Neurol 15:449–452

    Article  PubMed  Google Scholar 

  78. Di Zanni E, Bachetti T, Parodi S, Bocca P, Prigione I, Di Lascio S, Fornasari D, Ravazzolo R, Ceccherini I (2012) In vitro drug treatments reduce the deleterious effects of aggregates containing polyAla expanded PHOX2B proteins. Neurobiol Dis 45:508–518

    Article  PubMed  Google Scholar 

  79. Riedel M, Goldbaum O, Schwarz L, Schmitt S, Richter-Landsberg C (2010) 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy. PLoS One 5:e8753

    Article  PubMed Central  PubMed  Google Scholar 

  80. Sarkar S, Rubinsztein DC (2008) Small molecule enhancers of autophagy for neurodegenerative diseases. Mol Biosyst 4:895–901

    Article  CAS  PubMed  Google Scholar 

  81. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:651–662

    Article  CAS  PubMed  Google Scholar 

  82. French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31

    Article  Google Scholar 

  83. The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807

    Article  Google Scholar 

  84. Elizur A, Cannon CL, Ferkol TW (2008) Airway inflammation in cystic fibrosis. Chest 133:489–495

    Article  PubMed  Google Scholar 

  85. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL et al (2000) Inflammation and Alzheimer's disease. Neurobiol Aging 2:383–421

    Article  Google Scholar 

  86. Tufekci KU, Meuwissen R, Genc S, Genc K (2012) Inflammation in Parkinson's disease. Adv Protein Chem Struct Biol 88:69–132

    Article  CAS  PubMed  Google Scholar 

  87. Evans MC, Couch Y, Sibson N, Turner MR (2013) Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 53:34–41

    Article  CAS  PubMed  Google Scholar 

  88. Mitroulis I, Kourtzelis I, Kambas K, Chrysanthopoulou A, Ritis K (2011) Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype. Hum Immunol 72:135–138

    Article  CAS  PubMed  Google Scholar 

  89. Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M et al (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12:863–875

    Article  CAS  PubMed  Google Scholar 

  90. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S et al (2010) α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190:1023–1037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Arduíno DM, Esteves AR, Cardoso SM (2013) Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy 9:112–114

    Article  PubMed Central  PubMed  Google Scholar 

  92. Mullin S, Schapira A (2013) α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Mol Neurobiol 47:587–597

    Article  CAS  PubMed  Google Scholar 

  93. Tung YT, Wang BJ, Hu MK, Hsu WM, Lee H, Huang WP, Liao YF (2012) Autophagy: a double-edged sword in Alzheimer's disease. J Biosci 37:157–165

    Article  CAS  PubMed  Google Scholar 

  94. Nixon RA, Yang DS (2011) Autophagy failure in Alzheimer's disease—locating the primary defect. Neurobiol Dis 43:38–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M (2013) Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin-1 interactome. Prog Neurobiol 106–107:33–54

    Article  PubMed  Google Scholar 

  96. Chen S, Zhang X, Song L, Le W (2012) Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 22:110–116

    Article  CAS  PubMed  Google Scholar 

  97. Ferrucci M, Fulceri F, Toti L, Soldani P, Siciliano G, Paparelli A, Fornai F (2011) Protein clearing pathways in ALS. Arch Ital Biol 149:121–149

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Anna Capurro (Direzione Scientifica, Istituto Giannina Gaslini) as well as Edanz Editing for the English editing of the manuscript. Tiziana Bachetti is a recipient of a 12-month fellowship awarded by the Fondazione Umberto Veronesi. This work was also supported by the Italian Ministry of Health (“Cinque per mille” and Ricerca Corrente to Istituto Giannina Gaslini) and by the Italian Association for Cancer Research (AIRC grants MFAG-11501 and GI-13217 to TB and IC, respectively).

Conflict of interest

The authors declare no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Ceccherini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachetti, T., Ceccherini, I. Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation diseases. J Mol Med 92, 583–594 (2014). https://doi.org/10.1007/s00109-014-1150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1150-5

Keywords

Navigation