Skip to main content
Log in

Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells—transplanted either subcutaneously or orthotopically in nude mice—resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30.

Key message

  • Gene transfer allows the continuous in vivo production of therapeutic Fab fragments.

  • Mv-DN30 is an excellent tool for the treatment of Met-driven cancers.

  • Mv-DN30 gene therapy represents an innovative route for Met targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martini M, Secchione L, Siena S, Tejpar S, Bardelli A (2011) Targeted therapies: how personal should we go? Nat Rev Clin Oncol 9:87–97

    Article  PubMed  Google Scholar 

  2. De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, D’Ambrosio A, Porrati P et al (2012) The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res 72:4537–4550

    Article  PubMed  Google Scholar 

  3. Janku F, Stewart DJ, Kurzrock R (2010) Targeted therapy in non-small-cell lung cancer-is it becoming a reality? Nat Rev Clin Oncol 7:401–414

    Article  CAS  PubMed  Google Scholar 

  4. Wheeler DL, Dunn EF, Harari PM (2010) Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 7:493–507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  PubMed  Google Scholar 

  6. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104:20932–20937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12:89–103

    Article  CAS  PubMed  Google Scholar 

  8. Prat M, Crepaldi T, Pennacchietti S, Bussolino F, Comoglio PM (1998) Agonistic monoclonal antibodies against the Met receptor dissect the biological responses to HGF. J Cell Sci 111:237–247

    CAS  PubMed  Google Scholar 

  9. Vigna E, Pacchiana G, Mazzone M, Chiriaco C, Fontani L, Basilico C, Pennacchietti S, Comoglio PM (2008) “Active” cancer immunotherapy by anti-Met antibody gene transfer. Cancer Res 68:9176–9183

    Article  CAS  PubMed  Google Scholar 

  10. Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S, Comoglio PM, Giordano S (2006) Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 103:5090–5095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Foveau B, Ancot F, Leroy C, Petrelli A, Reiss K, Vingtdeux V, Giordano S, Fafeur V, Tulasne D (2009) Down-regulation of the met receptor tyrosine kinase by presenilin-dependent regulated intramembrane proteolysis. Mol Biol Cell 20:2495–2507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C, Kruger A (2010) A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 285:26335–26340

    Article  CAS  PubMed  Google Scholar 

  13. Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, Comoglio PM (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6:61–73

    Article  CAS  PubMed  Google Scholar 

  14. Pacchiana G, Chiriaco C, Stella MC, Petronzelli F, De Santis R, Galluzzo M, Carminati P, Comoglio PM, Michieli P, Vigna E (2010) Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody. J Biol Chem 285:36149–36157

    Article  CAS  PubMed  Google Scholar 

  15. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W (2000) Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci U S A 97:7963–7968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H, Naldini L (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5:252–261

    Article  CAS  PubMed  Google Scholar 

  17. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  CAS  PubMed  Google Scholar 

  18. Lutterbach B, Zeng Q, Davis LJ, Hatch H, Hang G, Kohl NE, Gibbs JB, Pan BS (2007) Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 67:2081–2088

    Article  CAS  PubMed  Google Scholar 

  19. Bertotti A, Burbridge MF, Gastaldi S, Salimi F, Torti D, Medico E, Giordano S, Corso S, Rolland-Valognes G, Lockhart BP et al (2009) Only a subset of Met-activated pathways are required to sustain oncogene addiction. Sci Signal 2:er11

    Article  PubMed  Google Scholar 

  20. Chattopadhyay N, Butters RR, Brown EM (2001) Agonists of the retinoic acid- and retinoid X-receptors inhibit hepatocyte growth factor secretion and expression in U87 human astrocytoma cells. Brain Res Mol Brain Res 87:100–108

    Article  CAS  PubMed  Google Scholar 

  21. Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152

    Article  CAS  PubMed  Google Scholar 

  22. Burgess T, Coxon A, Meyer S, Sun J, Rex K, Tsuruda T, Chen Q, Ho SY, Li L, Kaufman S et al (2006) Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 66:1721–1729

    Article  CAS  PubMed  Google Scholar 

  23. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417

    Article  CAS  PubMed  Google Scholar 

  24. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L (2002) Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 13:243–260

    Article  CAS  PubMed  Google Scholar 

  25. Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C (2009) The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 542:5–54

    Article  CAS  PubMed  Google Scholar 

  26. Kaneda Y (2010) Update on non-viral delivery methods for cancer therapy: possibilities of a drug delivery system with anticancer activities beyond delivery as a new therapeutic tool. Expert Opin Drug Deliv 7:1079–1093

    Article  CAS  PubMed  Google Scholar 

  27. Warnock JN, Daigre C, Al-Rubeai M (2011) Introduction to viral vectors. Methods Mol Biol 737:1–25

    Article  CAS  PubMed  Google Scholar 

  28. Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316

    Article  CAS  PubMed  Google Scholar 

  29. Montini E, Cesana D, Schmidt M, Sancito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  PubMed  Google Scholar 

  30. Mátrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490

    Article  PubMed  Google Scholar 

  31. De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G, Mazzoleni S, Moi D, Venneri MA, Indraccolo S et al (2008) Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14:299–311

    Article  PubMed  Google Scholar 

  32. Sanz L, Compte M, Guijarro-Muñoz I, Álvarez-Vallina L (2012) Non-hematopoietic stem cells as factories for in vivo therapeutic protein production. Gene Ther 19:1–7

    Article  CAS  PubMed  Google Scholar 

  33. Lal B, Xia S, Abounader R, Laterra J (2005) Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res 11:4479–4486

    Article  CAS  PubMed  Google Scholar 

  34. De Bacco F, Luraghi P, Medico E, Reato G, Girolami F, Perera T, Gabriele P, Comoglio PM, Boccaccio C (2011) Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J Natl Cancer Inst 103:645–661

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Livio Trusolino for critical reading of the manuscript, Manuela Cazzanti and Maria Galluzzo for help in animal experiments, Francesco Sassi and Stefania Giove for help in histological analysis. This work was supported by AIRC grants (IG Project no. 11852 and 2010 Special Program Molecular Clinical Oncology 5xMille, Project no. 9970) to PMC, by European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 201279 and no. 201640 to PMC and by ‘Metheresis Translational Research SA’ grant to the University of Torino.

Conflict of interest

PMC and PM are consultants of Metheresis Translational Research SA. The other authors declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisa Vigna or Paolo M. Comoglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigna, E., Pacchiana, G., Chiriaco, C. et al. Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med 92, 65–76 (2014). https://doi.org/10.1007/s00109-013-1079-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1079-0

Keywords

Navigation