Skip to main content

Advertisement

Log in

Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

β-adrenergic signaling is thought to facilitate cancer progression and blockade of β-adrenergic receptors (β-ARs) may slow down tumor growth. A possible role of β3-ARs in tumor growth has not been investigated so far and the lack of highly specific antagonists makes difficult the evaluation of this role. In the present study, β3-AR expression in mouse B16F10 melanoma cells was demonstrated and the effects of two widely used β3-AR blockers, SR59230A and L-748,337, were evaluated in comparison with propranolol, a β1-/β2-AR blocker with poor affinity for β3-ARs, and with siRNAs targeting specific β-ARs. Both SR59230A and L-748,337 reduced cell proliferation and induced apoptosis, likely through the involvement of the inducible isoform of nitric oxide synthase. In addition, hypoxia upregulated β3-ARs and vascular endothelial growth factor (VEGF) in B16F10 cells, whereas SR59230A or L-748,337 prevented the hypoxia-induced VEGF upregulation. Melanoma was induced in mice by inoculation of B16F10 cells. Intra-tumor injections of SR59230A or L-748,337 significantly reduced melanoma growth by reducing cell proliferation and stimulating apoptosis. SR59230A or L-748,337 treatment also resulted in significant decrease of the tumor vasculature. The decrease in tumor vasculature was due to apoptosis of endothelial cells and not to downregulation of angiogenic factors. These results demonstrate that SR59230A and L-748,337 significantly inhibit melanoma growth by reducing tumor cell proliferation and activating tumor cell death. In addition, both drugs reduce tumor vascularization by inducing apoptosis of endothelial cells. Together, these findings indicate β3-ARs as promising, novel targets for anti-cancer therapy.

Key message

  • β3-ARs are expressed in B16F10 melanoma cells

  • β3-ARs are involved in B16F10 cell proliferation and apoptosis

  • Reduced β3-AR function decreases the growth of melanoma induced by B16F10 cell inoculation

  • Drugs targeting β3-ARs reduce tumor vasculature

  • β3-ARs can be regarded as promising, novel targets for anti-cancer therapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18:1201–1206

    Article  CAS  PubMed  Google Scholar 

  2. Schuller AM (2008) Neurotransmission and cancer: implications for prevention and therapy. Anticancer Drugs 19:655–671

    Article  CAS  PubMed  Google Scholar 

  3. Hatiboglu MA, Kong LY, Wei J, Wang Y, McEnery KA, Fuller GN, Qiao W, Davies MA, Priebe W, Heimberger AB (2012) The tumor microenvironment expression of p-STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. Int J Cancer 131:8–17

    Article  CAS  PubMed  Google Scholar 

  4. Goundiam O, Nagel MD, Vayssade M (2010) Growth and survival signalling in B16F10 melanoma cells in 3D culture. Cell Biol Int 34:385–391

    Article  CAS  PubMed  Google Scholar 

  5. Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, Hailemichael Y, Jayaraman P, Myers JN, Grimm EA et al (2010) Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin Cancer Res 16:1834–1844

    Article  CAS  PubMed  Google Scholar 

  6. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12:939–944

    Article  CAS  PubMed  Google Scholar 

  7. Cao Y, Liu Q (2007) Therapeutic targets of multiple angiogenic factors for the treatment of cancer and metastasis. Adv Cancer Res 97:203–224

    Article  CAS  PubMed  Google Scholar 

  8. Ribatti D, Nico B, Perra MT, Longo V, Maxia C, Annese T, Piras F, Murtas D, Sirigu P (2010) Erythropoietin is involved in angiogenesis in human primary melanoma. Int J Exp Pathol 91:495–499

    Article  CAS  PubMed  Google Scholar 

  9. Nicchia GP, Stigliano C, Sparaneo A, Rossi A, Frigeri A, Svelto M (2013) Inhibition of aquaporin-1 dependent angiogenesis impairs tumour growth in a mouse model of melanoma. J Mol Med (Berl) 91:613–623

    Article  CAS  Google Scholar 

  10. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792

    Article  CAS  PubMed  Google Scholar 

  11. Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P (2013) β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest 93:279–290

    Article  CAS  PubMed  Google Scholar 

  12. De Giorgi V, Grazzini M, Gandini S, Benemei S, Lotti T, Marchionni N, Geppetti P (2011) Treatment with {beta}-blockers and reduced disease progression in patients with thick melanoma. Arch Intern Med 171:779–781

    PubMed  Google Scholar 

  13. Lemeshow S, Sørensen HT, Phillips G, Yang EV, Antonsen S, Riis AH, Lesinski GB, Jackson R, Glaser R (2011) β-blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomarkers Prev 20:2273–2279

    Article  CAS  PubMed  Google Scholar 

  14. Lamkin DM, Sloan EK, Patel AJ, Chiang BS, Pimentel MA, Ma JC, Arevalo JM, Morizono K, Cole SW (2012) Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling. Brain Behav Immun 26:635–641

    Article  CAS  PubMed  Google Scholar 

  15. Perrone MG, Notarnicola M, Caruso MG, Tutino V, Scilimati A (2008) Upregulation of beta3-adrenergic receptor mRNA in human colon cancer: a preliminary study. Oncology 75:224–229

    Article  CAS  PubMed  Google Scholar 

  16. Chisholm KM, Chang KW, Truong MT, Kwok S, West RB, Heerema-McKenney AE (2012) β-Adrenergic receptor expression in vascular tumors. Mod Pathol 25:446–1451

    Article  CAS  Google Scholar 

  17. Babol K, Przybylowska K, Lukaszek M, Pertynski T, Blasiak J (2004) An association between the Trp64Arg polymorphism in the beta3-adrenergic receptor gene and endometrial cancer and obesity. J Exp Clin Cancer Res 23:669–674

    CAS  PubMed  Google Scholar 

  18. Huang XE, Hamajima N, Saito T, Matsuo K, Mizutani M, Iwata H, Iwase T, Miura S, Mizuno T, Tokudome S et al (2001) Possible association of beta2- and beta3-adrenergic receptor gene polymorphisms with susceptibility to breast cancer. Breast Cancer Res 3:264–269

    Article  CAS  PubMed  Google Scholar 

  19. Bartness TJ, Vaughan CH, Song CK (2010) Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond) 34(Suppl 1):S36–S42

    Article  Google Scholar 

  20. Dessy C, Balligand JL (2010) Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv Pharmacol 59:135–163

    Article  CAS  PubMed  Google Scholar 

  21. Igawa Y, Michel MC (2013) Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. N Schmied Arch Pharmacol 386:177–183

    Article  CAS  Google Scholar 

  22. Matsumoto R, Otsuka A, Suzuki T, Shinbo H, Mizuno T, Kurita Y, Mugiya S, Ozono S (2013) Expression and functional role of β(3)-adrenoceptors in the human ureter. Int J Urol. doi:10.1111/iju.12093

    Google Scholar 

  23. Dal Monte M, Filippi L, Bagnoli P (2013) Beta3-adrenergic receptors modulate vascular endothelial growth factor release in response to hypoxia through the nitric oxide pathway in mouse retinal explants. N Schmied Arch Pharmacol 386:269–278

    Article  CAS  Google Scholar 

  24. Romana-Souza B, Otranto M, Almeida TF, Porto LC, Monte-Alto-Costa A (2011) Stress-induced epinephrine levels compromise murine dermal fibroblast activity through β-adrenoceptors. Exp Dermatol 20:413–419

    Article  CAS  PubMed  Google Scholar 

  25. Oikawa F, Nakahara T, Akanuma K, Ueda K, Mori A, Sakamoto K, Ishii K (2012) Protective effects of the β3-adrenoceptor agonist CL316243 against N-methyl-d-aspartate-induced retinal neurotoxicity. N Schmied Arch Pharmacol 385:1077–1081

    Article  CAS  Google Scholar 

  26. Baker JG (2010) The selectivity of b-adrenoceptor agonists at human b1-, b2- and b3-adrenoceptors. Br J Pharmacol 160:1048–1061

    Article  CAS  PubMed  Google Scholar 

  27. Bedogni B, Powell MB (2009) Hypoxia, melanocytes and melanoma—survival and tumor development in the permissive microenvironment of the skin. Pigment Cell Melanoma Res 22:166–174

    Article  CAS  PubMed  Google Scholar 

  28. Frazier EP, Michel-Reher MB, van Loenen P, Sand C, Schneider T, Peters SL, Michel MC (2011) Lack of evidence that nebivolol is a β3-adrenoceptor agonist. Eur J Pharmacol 654:86–91

    Article  CAS  PubMed  Google Scholar 

  29. Niclauss N, Michel-Reher MB, Alewijnse AE, Michel MC (2006) Comparison of three radioligands for the labelling of human beta-adrenoceptor subtypes. N Schmied Arch Pharmacol 374:99–105

    Article  CAS  Google Scholar 

  30. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. N Schmied Arch Pharmacol 369:151–159

    Article  CAS  Google Scholar 

  31. Vrydag W, Michel MC (2007) Tools to study beta3-adrenoceptors. N Schmied Arch Pharmacol 374:385–398

    Article  CAS  Google Scholar 

  32. Shan T, Ma Q, Zhang D, Guo K, Liu H, Wang F, Wu E (2011) β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol 665:1–7

    Article  CAS  PubMed  Google Scholar 

  33. Barbieri A, Palma G, Rosati A, Giudice A, Falco A, Petrillo A, Petrillo M, Bimonte S, Di Benedetto M, Esposito G et al (2012) Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth. J Cell Mol Med 16:920–926

    Article  CAS  PubMed  Google Scholar 

  34. Cai HY, Xu ZJ, Tang J, Sun Y, Chen KX, Wang HY, Zhu WL (2012) The essential role for aromatic cluster in the β3 adrenergic receptor. Acta Pharmacol Sin 33:1062–1068

    Article  CAS  PubMed  Google Scholar 

  35. Russell ST, Hirai K, Tisdale MJ (2002) Role of beta3-adrenergic receptors in the action of a tumour lipid mobilizing factor. Br J Cancer 86:424–428

    Article  CAS  PubMed  Google Scholar 

  36. Dal Monte M, Martini D, Latina V, Pavan B, Filippi L, Bagnoli P (2012) Beta-adrenoreceptor agonism influences retinal responses to hypoxia in a model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 53:2181–2192

    Article  PubMed  Google Scholar 

  37. Ristori C, Filippi L, Dal Monte M, Martini D, Cammalleri M, Fortunato P, la Marca G, Fiorini P, Bagnoli P (2012) Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade. Invest Ophthalmol Vis Sci 52:155–170

    Article  CAS  Google Scholar 

  38. Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J (2000) Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta-adrenoreceptor/cAMP/protein kinase A pathway involving Src but independently of Erk1/2. J Biol Chem 275:13802–13811

    Article  CAS  PubMed  Google Scholar 

  39. Glasner A, Avraham R, Rosenne E, Bensih M, Zmora O, Shemer S, Meiboom H, Ben-Eliyahu S (2010) Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol 184:2449–2457

    Article  CAS  PubMed  Google Scholar 

  40. Rath G, Balligand JL, Dessy C (2012) Vasodilatory mechanisms of beta receptor blockade. Curr Hypertens Rep 14:310–317

    Article  CAS  PubMed  Google Scholar 

  41. Hasegawa H, Saiki I (2002) Psychosocial stress augments tumor development through beta-adrenergic activation in mice. Jpn J Cancer Res 93:729–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Ente Cassa di Risparmio of Florence to LF. We thank Dr. Antonio Gazzano and Gino Bertolini for their assistance in maintaining the mouse colony. We also thank Dr. Elisabetta Catalani (Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Italy) and Dr. Irene Fornaciari (Department of Biology, University of Pisa) for helping in the double-label immunohistochemistry and confocal microscopy, Dr. Francesca Felice (Department of Surgical, Medical and Molecular Pathology and Critic Area, University of Pisa) for cytofluorimetric analysis, and Dr. Valentina Latina for assistance in the early stage of this work.

Disclosure statement

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Bagnoli.

Additional information

Massimo Dal Monte and Giovanni Casini contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dal Monte, M., Casini, G., Filippi, L. et al. Functional involvement of β3-adrenergic receptors in melanoma growth and vascularization. J Mol Med 91, 1407–1419 (2013). https://doi.org/10.1007/s00109-013-1073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1073-6

Keywords

Navigation