Skip to main content
Log in

alpha-Synuclein and intracellular trafficking: impact on the spreading of Parkinson’s disease pathology

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease is characterized by intracellular proteinaceous depositions known as Lewy bodies. These largely consist of the protein α-synuclein, whose physiological function remains unclear, but mutations and overexpression of the protein have been shown to cause early onset cases of Parkinson’s disease. Deregulation of α-synuclein biology causes neurodegeneration and impaired neuronal trafficking, hinting at a possible contribution to the pathological mechanism. Recent studies produced some evidence hinting at the involvement of several regulators of the transport machinery such as Rab GTPases and SNARE proteins, but also shown that α-synuclein can be propagated between cells. Here, we discuss the molecular interplay of α-synuclein with the intracellular transport machinery, its consequences, and the implications for disease mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsych Clin Neurosci 14(2):223–236, discussion 222

    Article  Google Scholar 

  2. De Lau LML, Breteler MMB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  3. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376

    Article  PubMed  CAS  Google Scholar 

  4. Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249(Suppl: III):1–5

    Article  Google Scholar 

  5. Braak H, Del Tredici K, Rüb U, De Vos RAI, Jansen Steur ENH, Braak E (2002) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  Google Scholar 

  6. Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318(1):121–134

    Article  PubMed  Google Scholar 

  7. Barone P, Antonini A, Colosimo C et al (2009) The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24(11):1641–1649

    Article  PubMed  Google Scholar 

  8. Ferrer I (2011) Neuropathology and neurochemistry of nonmotor symptoms in Parkinson’s disease. Parkinson’s Dis 2011:708404

  9. Davie CA (2008) A review of Parkinson’s disease. British Med Bull 86:109–127

    Article  CAS  Google Scholar 

  10. Hodge GK, Butcher LL (1980) Pars compacta of the substantia nigra modulates motor activity but is not involved importantly in regulating food and water intake. Naunyn-Schmiedeberg’s Arch Pharmacol 313(1):51–67

    Article  CAS  Google Scholar 

  11. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) alpha-Synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  PubMed  CAS  Google Scholar 

  12. Goedert M (2001) alpha-Synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501

    Article  PubMed  CAS  Google Scholar 

  13. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  PubMed  CAS  Google Scholar 

  14. Engelender S (2008) Ubiquitination of alpha-synuclein and autophagy in Parkinson’s disease. Autophagy 4(3):372–374

    PubMed  CAS  Google Scholar 

  15. Rodrigues e Silva AM, Geldsetzer F, Holdorff B, Kielhorn FW, Balzer-Geldsetzer M, Oertel WH, Hurtig H, Dodel R (2010) Who was the man who discovered the “Lewy bodies”? Mov Disord 25(12):1765–1773

    Article  PubMed  Google Scholar 

  16. Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2(8569):1219–1220

    Article  PubMed  CAS  Google Scholar 

  17. Fariello RG (1988) Experimental support for the implication of oxidative stress in the genesis of parkinsonian syndromes. Funct Neurol 3(4):407–12

    Google Scholar 

  18. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural trans 74(3):199–205

    Article  CAS  Google Scholar 

  19. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci U S A 86(4):1398–1400

    Article  PubMed  CAS  Google Scholar 

  20. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142(2):128–130

    Article  PubMed  CAS  Google Scholar 

  21. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355

    Article  PubMed  CAS  Google Scholar 

  22. Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10(4):717–721

    Article  PubMed  CAS  Google Scholar 

  23. Nakaso K, Tajima N, Ito S, Teraoka M, Yamashita A, Horikoshi Y, Kikuchi D, Mochida S, Nakashima K, Matsura T (2013) Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein. PLoS One 8(2):e55068

    Article  PubMed  CAS  Google Scholar 

  24. Zhu M, Li J, Fink AL (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278(41):40186–40197

    Article  PubMed  CAS  Google Scholar 

  25. Jo E, Darabie AA, Han K, Tandon A, Fraser PE, McLaurin J (2004) alpha-Synuclein–synaptosomal membrane interactions: implications for fibrillogenesis. Eur J Biochem 271(15):3180–3189

    Article  PubMed  CAS  Google Scholar 

  26. Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24(30):6715–6723

    Article  PubMed  CAS  Google Scholar 

  27. Nussbaum RL, Polymeropoulos MH (1997) Genetics of Parkinson’s disease. Hum Mol Genet 6(10):1687–1691

    Article  PubMed  CAS  Google Scholar 

  28. Eller M, Williams DR (2011) α-Synuclein in Parkinson disease and other neurodegenerative disorders. Clin Chem Lab Med 49(3):403–408

    Article  PubMed  CAS  Google Scholar 

  29. Kasuga K, Nishizawa M, Ikeuchi T (2012) α-Synuclein as CSF and blood biomarker of dementia with Lewy bodies. Int J Alzheimer’s Dis 2012:437025

  30. Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108(10):4194–4199

    Article  PubMed  CAS  Google Scholar 

  31. Chandra S, Chen X, Rizo J, Jahn R, Südhof TC (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278(17):15313–15318

    Article  PubMed  CAS  Google Scholar 

  32. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nature Med 4(11):1318–1320

    Article  PubMed  CAS  Google Scholar 

  33. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Google Scholar 

  34. Wang W, Perovic I, Chittuluru J et al (2011) A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 108(43):17797–17802

    Article  PubMed  CAS  Google Scholar 

  35. Fauvet B, Kamdem MM, Fares M-B et al (2012) alpha-Synuclein in the central nervous system and from erythrocytes, mammalian cells and E. coli exists predominantly as a disordered monomer. J Biol Chem. doi:10.1074/jbc.M111.318949

    Google Scholar 

  36. Fauvet B, Fares M-B, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012) Characterization of semisynthetic and naturally Nα-acetylated α-synuclein in vitro and in intact cells: implications for aggregation and cellular properties of α-synuclein. J Biol Chem 287(34):28243–28262

    Article  PubMed  CAS  Google Scholar 

  37. Binolfi A, Theillet F-X, Selenko P (2012) Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature? Biochem Soc Trans 40(5):950–954

    Article  PubMed  CAS  Google Scholar 

  38. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biol 4(2):160–164

    PubMed  CAS  Google Scholar 

  39. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9):3214–3220

    PubMed  CAS  Google Scholar 

  40. Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC (2005) alpha-Synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3):383–396

    Article  PubMed  CAS  Google Scholar 

  41. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) alpha-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science (New York, NY) 329(5999):1663–1667

    Article  CAS  Google Scholar 

  42. Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC (2010) alpha-Synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 21(11):1850–1863

    Article  PubMed  CAS  Google Scholar 

  43. Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC (2001) Induction of neuronal cell death by Rab5A-dependent endocytosis of alpha-synuclein. J Biol Chem 276(29):27441–27448

    Article  PubMed  CAS  Google Scholar 

  44. Dalfó E, Barrachina M, Rosa JL, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiol Dis 16(1):92–97

    Article  PubMed  CAS  Google Scholar 

  45. Gitler AD, Bevis BJ, Shorter J et al (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci U S A 105(1):145–150

    Article  PubMed  CAS  Google Scholar 

  46. Liu J, Zhang J-P, Shi M, Quinn T, Bradner J, Beyer R, Chen S, Zhang J (2009) Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. J Neurosci 29(5):1480–1485

    Article  PubMed  CAS  Google Scholar 

  47. Soper JH, Kehm V, Burd CG, Bankaitis VA, Lee VM-Y (2011) Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J Mol Neurosci 43(3):391–405

    Article  PubMed  CAS  Google Scholar 

  48. Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, Sharon R (2009) alpha-Synuclein and polyunsaturated fatty acids promote clathrin-mediated endocytosis and synaptic vesicle recycling. Traffic (Copenhagen, Denmark) 10(2):218–234

    Article  CAS  Google Scholar 

  49. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  PubMed  CAS  Google Scholar 

  50. Scott D, Roy S (2012) α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J Neurosci 32(30):10129–10135

    Article  PubMed  CAS  Google Scholar 

  51. Kang L, Moriarty GM, Woods LA, Ashcroft AE, Radford SE, Baum J (2012) N-terminal acetylation of α-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Sci 21(7):911–917

    Article  PubMed  CAS  Google Scholar 

  52. Maltsev AS, Ying J, Bax A (2012) Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties. Biochemistry 51(25):5004–5013

    Article  PubMed  CAS  Google Scholar 

  53. Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc 133(18):7152–7158

    Article  PubMed  CAS  Google Scholar 

  54. Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC (1990) A large kindred with autosomal dominant Parkinson’s disease. Ann Neurol 27(3):276–282

    Article  PubMed  CAS  Google Scholar 

  55. Polymeropoulos MH, Higgins JJ, Golbe LI et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21–q23. Science (New York, NY) 274(5290):1197–1199

    Article  CAS  Google Scholar 

  56. Polymeropoulos MH (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  PubMed  CAS  Google Scholar 

  57. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York, NY) 276(5321):2045–2047

    Article  CAS  Google Scholar 

  58. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    Article  PubMed  Google Scholar 

  59. Zarranz JJ, Alegre J, Gómez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    Article  PubMed  CAS  Google Scholar 

  60. Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science (New York, NY) 302(5646):841

    Article  CAS  Google Scholar 

  61. Chartier-Harlin M-C, Kachergus J, Roumier C et al (2004) alpha-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    Google Scholar 

  62. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science (New York, NY) 287(5456):1265–1269

    Article  CAS  Google Scholar 

  63. Van der Putten H, Wiederhold KH, Probst A et al (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20(16):6021–6029

    PubMed  Google Scholar 

  64. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM-Y (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34(4):521–533

    Article  PubMed  CAS  Google Scholar 

  65. Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science (New York, NY) 302(5651):1769–1772

    Article  CAS  Google Scholar 

  66. Van Ham TJ, Thijssen KL, Breitling R, Hofstra RMW, Plasterk RHA, Nollen EAA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS genetics 4(3):e1000027

    Article  PubMed  CAS  Google Scholar 

  67. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science (New York, NY) 302(5651):1772–1775

    Article  CAS  Google Scholar 

  68. Cooper AA, Gitler AD, Cashikar A et al (2006) alpha-Synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science (New York, NY) 313(5785):324–328

    Article  CAS  Google Scholar 

  69. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733

    Article  PubMed  CAS  Google Scholar 

  70. Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren C-H, Kato T, Mitani S, Iwatsubo T (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet 17(19):2997–3009

    Article  PubMed  CAS  Google Scholar 

  71. Ruan Q, Harrington AJ, Caldwell KA, Caldwell GA, Standaert DG (2010) VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson’s disease. Neurobiol Dis 37(2):330–338

    Article  PubMed  CAS  Google Scholar 

  72. Brown A (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160(6):817–821

    Article  PubMed  CAS  Google Scholar 

  73. Saha AR, Hill J, Utton MA et al (2004) Parkinson’s disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 117(Pt 7):1017–1024

    Article  PubMed  CAS  Google Scholar 

  74. Lee H-J, Khoshaghideh F, Lee S, Lee S-J (2006) Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 24(11):3153–3162

    Article  PubMed  Google Scholar 

  75. Chen L, Jin J, Davis J, Zhou Y, Wang Y, Liu J, Lockhart PJ, Zhang J (2007) Oligomeric alpha-synuclein inhibits tubulin polymerization. Biochem Biophys Res Commun 356(3):548–553

    Article  PubMed  CAS  Google Scholar 

  76. Gosavi N, Lee H-J, Lee JS, Patel S, Lee S-J (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277(50):48984–48992

    Article  PubMed  CAS  Google Scholar 

  77. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012) Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci 32(10):3301–3305

    Article  PubMed  CAS  Google Scholar 

  78. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo. J Neurosci 32(10):3306–3320

    Article  PubMed  CAS  Google Scholar 

  79. Cabin DE, Shimazu K, Murphy D et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22(20):8797–8807

    PubMed  CAS  Google Scholar 

  80. Al-Wandi A, Ninkina N, Millership S, Williamson SJM, Jones PA, Buchman VL (2010) Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol Aging 31(5):796–804

    Article  PubMed  CAS  Google Scholar 

  81. Larsen KE, Schmitz Y, Troyer MD et al (2006) alpha-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26(46):11915–11922

    Article  PubMed  CAS  Google Scholar 

  82. Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S (2010) A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 30(24):8083–8095

    Article  PubMed  CAS  Google Scholar 

  83. Lundblad M, Decressac M, Mattsson B, Björklund A (2012) Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1200575109

    Google Scholar 

  84. Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313(4):889–901

    Article  PubMed  CAS  Google Scholar 

  85. Diekmann Y, Seixas E, Gouw M, Tavares-Cadete F, Seabra MC, Pereira-Leal JB (2011) Thousands of rab GTPases for the cell biologist. PLoS Comput Biol 7(10):e1002217

    Article  PubMed  CAS  Google Scholar 

  86. Chan C-C, Scoggin S, Wang D et al (2011) Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Curr Biol 21(20):1704–1715

    Article  PubMed  CAS  Google Scholar 

  87. Lee M-TG, Mishra A, Lambright DG (2009) Structural mechanisms for regulation of membrane traffic by rab GTPases. Traffic (Copenhagen, Denmark) 10(10):1377–1389

    Article  CAS  Google Scholar 

  88. Fischer von Mollard G, Stahl B, Li C, Südhof TC, Jahn R (1994) Rab proteins in regulated exocytosis. Trends Biochem Sci 19(4):164–168

    Article  PubMed  CAS  Google Scholar 

  89. Pfeffer SR (2001) Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11(12):487–491

    Article  PubMed  CAS  Google Scholar 

  90. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149

    Article  PubMed  CAS  Google Scholar 

  91. Dalfó E, Gómez-Isla T, Rosa JL, Nieto Bodelón M, Cuadrado Tejedor M, Barrachina M, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with Rab proteins in alpha-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63(4):302–313

    PubMed  Google Scholar 

  92. Dalfó E, Ferrer I (2005) alpha-Synuclein binding to rab3a in multiple system atrophy. Neurosci Lett 380(1–2):170–175

    Article  PubMed  CAS  Google Scholar 

  93. Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, Südhof TC (1994) The role of Rab3A in neurotransmitter release. Nature 369(6480):493–497

    Article  PubMed  CAS  Google Scholar 

  94. Fischer von Mollard G, Südhof TC, Jahn R (1991) A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature 349(6304):79–81

    Article  PubMed  CAS  Google Scholar 

  95. Fischer von Mollard G, Stahl B, Walch-Solimena C, Takei K, Daniels L, Khoklatchev A, De Camilli P, Südhof TC, Jahn R (1994) Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway. Eur J Cell Biol 65(2):319–326

    PubMed  CAS  Google Scholar 

  96. Potokar M, Lacovich V, Chowdhury HH, Kreft M, Zorec R (2012) Rab4 and Rab5 GTPase are required for directional mobility of endocytic vesicles in astrocytes. Glia 60(4):594–604

    Article  PubMed  Google Scholar 

  97. Soper JH, Roy S, Stieber A, Lee E, Wilson RB, Trojanowski JQ, Burd CG, Lee VM-Y (2008) alpha-Synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol Biol Cell 19(3):1093–1103

    Article  PubMed  CAS  Google Scholar 

  98. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122(5):735–749

    Article  PubMed  CAS  Google Scholar 

  99. Utskarpen A, Slagsvold HH, Iversen T-G, Wälchli S, Sandvig K (2006) Transport of ricin from endosomes to the Golgi apparatus is regulated by Rab6A and Rab6A′. Traffic (Copenhagen, Denmark) 7(6):663–672

    Article  CAS  Google Scholar 

  100. Lee HJ, Kang SJ, Lee K, Im H (2011) Human α-synuclein modulates vesicle trafficking through its interaction with prenylated Rab acceptor protein 1. Biochem Biophys Res Commun 412(4):526–531

    Article  PubMed  CAS  Google Scholar 

  101. Figueroa C, Taylor J, Vojtek AB (2001) Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J Biol Chem 276(30):28219–28225

    Article  PubMed  CAS  Google Scholar 

  102. Foran PG, Mohammed N, Lisk GO, Nagwaney S, Lawrence GW, Johnson E, Smith L, Aoki KR, Dolly JO (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278(2):1363–1371

    Article  PubMed  CAS  Google Scholar 

  103. Proux-Gillardeaux V, Rudge R, Galli T (2005) The tetanus neurotoxin-sensitive and insensitive routes to and from the plasma membrane: fast and slow pathways? Traffic (Copenhagen, Denmark) 6(5):366–373

    Article  CAS  Google Scholar 

  104. Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2(2):98–106

    Article  PubMed  CAS  Google Scholar 

  105. Cook JD, Cho WJ, Stemmler TL, Jena BP (2008) Circular dichroism (CD) spectroscopy of the assembly and disassembly of SNAREs: the proteins involved in membrane fusion in cells. Chem Phys Lett 462(1–3):6–9

    Article  PubMed  CAS  Google Scholar 

  106. Darios F, Ruipérez V, López I, Villanueva J, Gutierrez LM, Davletov B (2010) alpha-Synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis. EMBO reports 11(7):528–533

    Article  PubMed  CAS  Google Scholar 

  107. Tofaris GK, Garcia Reitböck P, Humby T et al (2006) Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1–120): implications for Lewy body disorders. J Neurosci 26(15):3942–3950

    Article  PubMed  CAS  Google Scholar 

  108. Garcia-Reitböck P, Anichtchik O, Bellucci A et al (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133(Pt 7):2032–2044

    Article  PubMed  Google Scholar 

  109. Karpinar DP, Balija MBG, Kügler S et al (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28(20):3256–3268

    Article  PubMed  CAS  Google Scholar 

  110. Thayanidhi N, Liang Y, Hasegawa H, Nycz DC, Oorschot V, Klumperman J, Hay JC (2012) R-SNARE ykt6 resides in membrane-associated protease-resistant protein particles and modulates cell cycle progression when over-expressed. Biol Cell 104(7):397–417

    Article  PubMed  CAS  Google Scholar 

  111. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nature Med 14(5):504–506

    Article  PubMed  CAS  Google Scholar 

  112. Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB (2008) Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord 23(16):2303–2306

    Article  PubMed  Google Scholar 

  113. Li J-Y, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nature Med 14(5):501–503

    Article  PubMed  CAS  Google Scholar 

  114. Desplats P, Lee H-J, Bae E-J, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee S-J (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106(31):13010–13015

    Article  PubMed  CAS  Google Scholar 

  115. Angot E, Steiner JA, Hansen C, Li J-Y, Brundin P (2010) Are synucleinopathies prion-like disorders? Lancet Neurol 9(11):1128–1138

    Article  PubMed  Google Scholar 

  116. Steiner JA, Angot E, Brundin P (2011) A deadly spread: cellular mechanisms of α-synuclein transfer. Cell Death Diff 18(9):1425–1433

    Article  CAS  Google Scholar 

  117. El-Agnaf OMA, Salem SA, Paleologou KE et al (2003) alpha-Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17(13):1945–1947

    PubMed  CAS  Google Scholar 

  118. Jang A, Lee H-J, Suk J-E, Jung J-W, Kim K-P, Lee S-J (2010) Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113(5):1263–1274

    PubMed  CAS  Google Scholar 

  119. Liu J, Zhou Y, Wang Y, Fong H, Murray TM, Zhang J (2007) Identification of proteins involved in microglial endocytosis of alpha-synuclein. J Proteome Res 6(9):3614–3627

    Article  PubMed  CAS  Google Scholar 

  120. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132

    Article  PubMed  CAS  Google Scholar 

  121. Hansen C, Angot E, Bergström A-L et al (2011) α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121(2):715–725

    Article  PubMed  CAS  Google Scholar 

  122. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM-Y (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71

    Article  PubMed  CAS  Google Scholar 

  123. Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M (2012) Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol 72(4):517–524

    Article  PubMed  CAS  Google Scholar 

  124. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM-Y (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science (New York, NY) 338(6109):949–953

    Article  CAS  Google Scholar 

Download references

Acknowledgments

TFO is supported by the Cluster of Excellence and DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain. We thank Catarina Fernandes for her excellent support with figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago F. Outeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisbach, S.E., Outeiro, T.F. alpha-Synuclein and intracellular trafficking: impact on the spreading of Parkinson’s disease pathology. J Mol Med 91, 693–703 (2013). https://doi.org/10.1007/s00109-013-1038-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1038-9

Keywords

Navigation