Skip to main content
Log in

Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Compelling evidence indicates that the human ether-à-go-go voltage-gated potassium channels (hEAG1) may represent new valuable membrane therapeutic targets and diagnostic/prognostic biomarkers in various cancers. This study is the first to investigate the expression of hEAG1 potassium channel subunit in both primary tumors and HNSCC-derived cell lines to ascertain its clinical and biological role in tumor progression. Our findings demonstrate that hEAG1 is frequently aberrantly expressed in a high percentage of primary tumors (83 %, 45/54 cases) and HNSCC-derived cell lines (83 %, 10/12 cell lines). hEAG1 expression increased during HNSCC progression and was more frequent in advanced tumors. Strikingly, hEAG1 expression was also detected in a notable proportion (39 %, 17/44 cases) of patient-matched normal adjacent mucosa, whereas no expression was detected in normal epithelia from non-oncologic patients without exposure to tobacco carcinogens. In an attempt to identify the underlying mechanisms of aberrant hEAG1 expression in HNSCC, we found that hEAG1 gene copy gain occurred at a low frequency (15 %, 13/88 cases) in primary tumors but was not observed in early stages of HNSCC tumorigenesis. Furthermore, this study provides original evidence supporting the involvement of histone acetylation (i.e., H3Ac and H4K16Ac activating marks) in the regulation of hEAG1 expression in HNSCC. In addition, functional studies in HNSCC cells further revealed that hEAG1 expression is a biologically relevant feature that promotes cell proliferation and invasion, although independently of its ion-conducting function. Our findings strongly support the notion that hEAG1 may represent a promising candidate as tumor marker and membrane therapeutic target for HNSCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Forastiere A, Koch W, Trotti A, Sidransky D (2001) Head-and-neck cancer. N Engl J Med 345:1890–1900

    Article  PubMed  CAS  Google Scholar 

  2. Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359:1143–1154

    Article  PubMed  CAS  Google Scholar 

  3. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22

    Article  PubMed  CAS  Google Scholar 

  4. Niemeyer BA, Mery L, Zawar C, Suckow A, Monje F, Pardo LA, Stuhmer W, Flockerzi V, Hoth M (2001) Ion channels in health and disease. EMBO Rep 2:568–573

    Article  PubMed  CAS  Google Scholar 

  5. O’Grady SM, Lee SY (2005) Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells. Int J Biochem Cell Biol 37:1578–1594

    Article  PubMed  Google Scholar 

  6. Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7:761–771

    Article  PubMed  CAS  Google Scholar 

  7. Wang Z (2004) Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448:274–286

    Article  PubMed  CAS  Google Scholar 

  8. Kass RS (2005) The channelopathies: novel insights into molecular and genetic mechanisms of human disease. J Clin Invest 115:1986–1989

    Article  PubMed  CAS  Google Scholar 

  9. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    Article  PubMed  CAS  Google Scholar 

  10. Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F, Stühmer W (2005) Role of voltage-gated potassium channels in cancer. J Membr Biol 205:115–124

    Article  PubMed  CAS  Google Scholar 

  11. Nilius B, Wohlrab W (1992) Potassium channels and regulation of proliferation of human melanoma cells. J Physiol 445:537–548

    PubMed  CAS  Google Scholar 

  12. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M et al (1998) herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 58:815–822

    PubMed  CAS  Google Scholar 

  13. Smith GA, Tsui HW, Newell EW, Jiang X, Zhu XP, Tsui FW, Schlichter LC (2002) Functional upregulation of HERG K + channels in neoplastic hematopoietic cells. J Biol Chem 277:18528–18534

    Article  PubMed  CAS  Google Scholar 

  14. Pardo LA, del Camino D, Sánchez A, Alves F, Brüggemann A, Beckh S, Stühmer W (1999) Oncogenic potential of EAG K+ channels. EMBO J 18:5540–5547

    Article  PubMed  CAS  Google Scholar 

  15. Asher V, Sowter H, Shaw R, Bali A, Khan R (2010) Eag and HERG potassium channels as novel therapeutic targets in cancer. World J Surg Oncol 8:113

    Article  PubMed  Google Scholar 

  16. Pardo LA, Stühmer W (2008) Eag1: an emerging oncological target. Cancer Res 68:1611–1613

    Article  PubMed  CAS  Google Scholar 

  17. Hemmerlein B, Weseloh RM, Mello de Queiroz F, Knötgen H, Sánchez A, Rubio ME, Martin S, Schliephacke T, Jenke M, Heinz-Joachim-Radzun et al (2006) Overexpression of Eag1 potassium channels in clinical tumours. Mol Cancer 5:41

    Article  PubMed  Google Scholar 

  18. Mello de Queiroz F, Suarez-Kurtz G, Stühmer W, Pardo LA (2006) Ether à go-go potassium channel expression in soft tissue sarcoma patients. Mol Cancer 5:42

    Article  PubMed  Google Scholar 

  19. Agarwal JR, Griesinger F, Stühmer W, Pardo LA (2010) The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Mol Cancer 9:18

    Article  PubMed  Google Scholar 

  20. Pedrero JM, Carracedo DG, Pinto CM, Zapatero AH, Rodrigo JP, Nieto CS, Gonzalez MV (2005) Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. Int J Cancer 114:242–248

    Article  PubMed  CAS  Google Scholar 

  21. Rodrigo JP, García-Carracedo D, García LA, Menéndez S, Allonca E, González MV, Fresno MF, Suárez C, García-Pedrero JM (2009) Distinctive clinicopathological associations of amplification of the cortactin gene at 11q13 in head and neck squamous cell carcinomas. J Pathol 217:516–523

    Article  PubMed  CAS  Google Scholar 

  22. Lansford CD, Grénman R, Bier H, Somers KD, Kim SY, Whiteside TL, Clayman GL, Welkoborsky HJ, Carey TE (1999) Head and neck cancers. In: Masters J, Palsson B (eds) Human cell culture. Kluwer, Dordrecht, pp 185–255

    Google Scholar 

  23. Hermsen MA, Joenje H, Arwert F, Welters MJ, Braakhuis BJ, Bagnay M, Westerveld A, Slater R (1996) Centromeric breakage as a major cause of cytogenetic abnormalities in oral squamous cell carcinoma. Gene Chromosome Cancer 15:1–9

    Article  CAS  Google Scholar 

  24. Calvanese V, Lara E, Suárez-Alvarez B, Abu Dawud R, Vázquez-Chantada M, Martínez-Chantar ML, Embade N, López-Nieva P, Horrillo A, Hmadcha A et al (2010) Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci U S A 107:13736–13741

    Article  PubMed  CAS  Google Scholar 

  25. Gómez-Varela D, Zwick-Wallasch E, Knötgen H, Sánchez A, Hettmann T, Ossipov D, Weseloh R, Contreras-Jurado C, Rothe M, Stühmer W et al (2007) Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 67:7343–7349

    Article  PubMed  Google Scholar 

  26. Vindelov LL, Christensen IJ, Nissen NI (1983) Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry 3:328–331

    Article  PubMed  CAS  Google Scholar 

  27. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  PubMed  CAS  Google Scholar 

  28. Weber C, Mello de Queiroz F, Downie BR, Suckow A, Stühmer W, Pardo LA (2006) Silencing the activity and proliferative properties of the human EagI potassium channel by RNA interference. J Biol Chem 281:13030–13037

    Article  PubMed  CAS  Google Scholar 

  29. Downie BR, Sánchez A, Knötgen H, Contreras-Jurado C, Gymnopoulos M, Weber C, Stühmer W, Pardo LA (2008) Eag1 expression interferes with hypoxia homeostasis and induces angiogenesis in tumors. J Biol Chem 283:36234–36240

    Article  PubMed  CAS  Google Scholar 

  30. Ousingsawat J, Spitzner M, Puntheeranurak S, Terracciano L, Tornillo L, Bubendorf L, Kunzelmann K, Schreiber R (2007) Expression of voltage-gated potassium channels in human and mouse colonic carcinoma. Clin Cancer Res 13:824–831

    Article  PubMed  CAS  Google Scholar 

  31. Restrepo-Angulo I, Sánchez-Torres C, Camacho J (2011) Human EAG1 potassium channels in the epithelial-to-mesenchymal transition in lung cancer cells. Anticancer Res 31:1265–1270

    PubMed  CAS  Google Scholar 

  32. Namiki T, Yanagawa S, Izumo T, Ishikawa M, Tachibana M, Kawakami Y, Yokozeki H, Nishioka K, Kaneko Y (2005) Genomic alterations in primary cutaneous melanomas detected by metaphase comparative genomic hybridization with laser capture or manual microdissection: 6p gains may predict poor outcome. Cancer Genet Cytogenet 157:1–11

    Article  PubMed  CAS  Google Scholar 

  33. Bergamo NA, Rogatto SR, Poli-Frederico RC, Reis PP, Kowalski LP, Zielenska M, Squire JA (2000) Comparative genomic hybridization analysis detects frequent over-representation of DNA sequences at 3q, 7p, and 8q in head and neck carcinomas. Cancer Genet Cytogenet 119:48–55

    Article  PubMed  CAS  Google Scholar 

  34. Wagner JM, Hackanson B, Lübbert M, Jung M (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics 1:117–136

    Article  PubMed  CAS  Google Scholar 

  35. Lin H, Li Z, Chen C, Luo X, Xiao J, Dong D, Lu Y, Yang B, Wang Z (2011) Transcriptional and post-transcriptional mechanisms for oncogenic overexpression of ether à go-go K+ channel. PLoS One 6:e20362

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all members of the Cancer Epigenetic Unit (IUOPA, Oviedo, Spain) and the Department of Molecular Biology of Neuronal Signals (Max-Planck-Institute, Göttingen, Germany), and Dr. Marta Alonso, Dr. Angel M. Nistal, Dr. José Luís Martínez and Ana Salas (SCT Facilities, University of Oviedo) for excellent technical assistance. We also thank Pablo Martínez-Camblor (OIB-CAIBER) for his assistance with statistical analyses, and Teresa Ortega and OIB staff for their administrative support. This work was supported by grants from Fondo de Investigación Sanitaria CP07/00032 and PI10/00157 (to J.M.G.P), PI11/00929 (to C.S.), ISCIII Fondos FEDER, RTICC (RD06/0020/0034) and Obra Social Cajastur-IUOPA. S.T.M. and S.A.T. are recipients of a fellowship from FICYT (BP08-007 and BP11-114).

Disclosure statement

L.A.P. is shareholder at iOnGen AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juana María García-Pedrero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez, S.T., Villaronga, M.Á., Rodrigo, J.P. et al. Frequent aberrant expression of the human ether à go-go (hEAG1) potassium channel in head and neck cancer: pathobiological mechanisms and clinical implications. J Mol Med 90, 1173–1184 (2012). https://doi.org/10.1007/s00109-012-0893-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0893-0

Keywords

Navigation