Skip to main content
Log in

Hypoxia: a double-edged sword of immunity

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Hypoxia is a condition of low oxygen tension that characterizes virtually every site of inflammation, tissue damage, and neoplasia. Hypoxic environment attracts infiltrating immune cells that move against oxygen gradients and respond to these demanding conditions by switching to anaerobic metabolism to maintain their energy requirements. Several lines of evidence suggest that oxygen deprivation causes opposite effects on the innate or adaptive immune responses. We will review the evidence that the hypoxic environment promotes the recruitment, activation, and survival of innate immune cells while inhibiting the adaptive immunity through downregulation of effector lymphocyte functions. This divergent regulation of the innate and adaptive immunity appears to reflect evolutionary mechanisms aimed to both guarantee tissue homeostasis and provide safeguard mechanisms against autoimmunity. Selective inhibition of hypoxic signaling pathways in myeloid versus lymphoid cells may open new therapeutic opportunities in diseases characterized by low oxygen tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Semenza GL (2009) Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiol Bethesda 24:97–106

    Article  CAS  Google Scholar 

  2. Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K et al (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 987:15–25

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67

    Article  PubMed  CAS  Google Scholar 

  4. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    Article  PubMed  CAS  Google Scholar 

  5. Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204

    Article  PubMed  CAS  Google Scholar 

  6. Webster KA (2003) Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol 206:2911–2922

    Article  PubMed  CAS  Google Scholar 

  7. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  8. Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38

    Article  PubMed  CAS  Google Scholar 

  9. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  10. Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E (2009) Review: immunity mechanisms in crustaceans. Innate Immun 15:179–188

    Article  PubMed  CAS  Google Scholar 

  11. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362

    Article  PubMed  CAS  Google Scholar 

  12. Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17:109–147

    Article  PubMed  CAS  Google Scholar 

  13. Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (2005) Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 310:1970–1973

    Article  PubMed  CAS  Google Scholar 

  14. Pancer Z, Amemiya CT, Ehrhardt GR, Ceitlin J, Gartland GL, Cooper MD (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430:174–180

    Article  PubMed  CAS  Google Scholar 

  15. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  PubMed  CAS  Google Scholar 

  16. Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822

    Article  PubMed  CAS  Google Scholar 

  17. Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450:363–371

    Article  PubMed  CAS  Google Scholar 

  18. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350

    Article  PubMed  CAS  Google Scholar 

  19. Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  PubMed  CAS  Google Scholar 

  20. Chandel NS, Trzyna WC, McClintock DS, Schumacker PT (2000) Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J Immunol 165:1013–1021

    PubMed  CAS  Google Scholar 

  21. Battaglia F, Delfino S, Merello E, Puppo M, Piva R, Varesio L, Bosco MC (2008) Hypoxia transcriptionally induces macrophage-inflammatory protein-3alpha/CCL-20 in primary human mononuclear phagocytes through nuclear factor (NF)-kappaB. J Leukoc Biol 83:648–662

    Article  PubMed  CAS  Google Scholar 

  22. van Uden P, Kenneth NS, Rocha S (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J 412:477–484

    Article  PubMed  Google Scholar 

  23. Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, Chung DC (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11:992–997

    PubMed  CAS  Google Scholar 

  24. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131:309–323

    Article  PubMed  CAS  Google Scholar 

  25. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL (2004) Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 103:1876–1882

    Article  PubMed  CAS  Google Scholar 

  26. Rong Y, Hu F, Huang R, Mackman N, Horowitz JM, Jensen RL, Durden DL, Van Meir EG, Brat DJ (2006) Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Cancer Res 66:7067–7074

    Article  PubMed  CAS  Google Scholar 

  27. Oikawa M, Abe M, Kurosawa H, Hida W, Shirato K, Sato Y (2001) Hypoxia induces transcription factor ETS-1 via the activity of hypoxia-inducible factor-1. Biochem Biophys Res Commun 289:39–43

    Article  PubMed  CAS  Google Scholar 

  28. Laderoute KR, Calaoagan JM, Gustafson-Brown C, Knapp AM, Li GC, Mendonca HL, Ryan HE, Wang Z, Johnson RS (2002) The response of c-jun/AP-1 to chronic hypoxia is hypoxia-inducible factor 1 alpha dependent. Mol Cell Biol 22:2515–2523

    Article  PubMed  CAS  Google Scholar 

  29. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z et al (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416

    Article  PubMed  CAS  Google Scholar 

  30. Uenoyama Y, Seno H, Fukuda A, Sekikawa A, Nanakin A, Sawabu T, Kawada M, Kanda N, Suzuki K, Yada N et al (2006) Hypoxia induced by benign intestinal epithelial cells is associated with cyclooxygenase-2 expression in stromal cells through AP-1-dependent pathway. Oncogene 25:3277–3285

    Article  PubMed  CAS  Google Scholar 

  31. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113

    Article  PubMed  CAS  Google Scholar 

  32. Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A, Wang Y, Kristensen GB, Helland A, Borresen-Dale et al (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3:e47

    Article  PubMed  Google Scholar 

  33. Fardin P, Barla A, Mosci S, Rosasco L, Verri A, Varesio L (2009) The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines. BMC Genomics 10:474

    Article  PubMed  Google Scholar 

  34. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41:607–616

    Article  PubMed  CAS  Google Scholar 

  35. Dieterich HJ, Weissmuller T, Rosenberger P, Eltzschig HK (2006) Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med 34:1775–1782

    Article  PubMed  CAS  Google Scholar 

  36. Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907–918

    Article  PubMed  CAS  Google Scholar 

  37. Colgan SP, Dzus AL, Parkos CA (1996) Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J Exp Med 184:1003–1015

    Article  PubMed  CAS  Google Scholar 

  38. Rainger GE, Fisher A, Shearman C, Nash GB (1995) Adhesion of flowing neutrophils to cultured endothelial cells after hypoxia and reoxygenation in vitro. Am J Physiol 269:H1398–H1406

    PubMed  CAS  Google Scholar 

  39. Metinko AP, Kunkel SL, Standiford TJ, Strieter RM (1992) Anoxia-hyperoxia induces monocyte-derived interleukin-8. J Clin Invest 90:791–798

    Article  PubMed  CAS  Google Scholar 

  40. Loeffler DA, Keng PC, Baggs RB, Lord EM (1990) Lymphocytic infiltration and cytotoxicity under hypoxic conditions in the EMT6 mouse mammary tumor. Int J Cancer 45:462–467

    Article  PubMed  CAS  Google Scholar 

  41. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201:105–115

    Article  PubMed  CAS  Google Scholar 

  42. Rinaldo JE, Basford RE (1987) Neutrophil-endothelial interactions: modulation of neutrophil activation responses by endothelial cells. Tissue Cell 19:599–606

    Article  PubMed  CAS  Google Scholar 

  43. Almholt K, Johnsen M (2003) Stromal cell involvement in cancer. Recent Results Cancer Res 162:31–42

    PubMed  CAS  Google Scholar 

  44. Tsuda Y, Takahashi H, Kobayashi M, Hanafusa T, Herndon DN, Suzuki F (2004) Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21:215–226

    Article  PubMed  CAS  Google Scholar 

  45. Yoshida T, Tsuda Y, Takeuchi D, Kobayashi M, Pollard RB, Suzuki F (2006) Glycyrrhizin inhibits neutrophil-associated generation of alternatively activated macrophages. Cytokine 33:317–322

    Article  PubMed  CAS  Google Scholar 

  46. Tamura DY, Moore EE, Partrick DA, Johnson JL, Offner PJ, Silliman CC (2002) Acute hypoxemia in humans enhances the neutrophil inflammatory response. Shock 17:269–273

    Article  PubMed  Google Scholar 

  47. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    Article  PubMed  CAS  Google Scholar 

  48. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, von Dadelszen P (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 27:56–61

    Article  PubMed  CAS  Google Scholar 

  49. Gupta AK, Hasler P, Holzgreve W, Hahn S (2007) Neutrophil NETs: a novel contributor to preeclampsia-associated placental hypoxia? Semin Immunopathol 29:163–167

    Article  PubMed  CAS  Google Scholar 

  50. Bosco MC, Puppo M, Santangelo C, Anfosso L, Pfeffer U, Fardin P, Battaglia F, Varesio L (2006) Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J Immunol 177:1941–1955

    PubMed  CAS  Google Scholar 

  51. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, Johnson RS, Imityaz HZ, Simon MC, Fredlund E et al (2009) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–859

    Article  PubMed  CAS  Google Scholar 

  52. Hempel SL, Monick MM, Hunninghake GW (1996) Effect of hypoxia on release of IL-1 and TNF by human alveolar macrophages. Am J Respir Cell Mol Biol 14:170–176

    PubMed  CAS  Google Scholar 

  53. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182:1683–1693

    Article  PubMed  CAS  Google Scholar 

  54. Beck-Schimmer B, Schimmer RC, Madjdpour C, Bonvini JM, Pasch T, Ward PA (2001) Hypoxia mediates increased neutrophil and macrophage adhesiveness to alveolar epithelial cells. Am J Respir Cell Mol Biol 25:780–787

    PubMed  CAS  Google Scholar 

  55. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  56. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    Article  PubMed  CAS  Google Scholar 

  57. Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, Hurtado-Ziola N, Nizet V, Johnson RS (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115:1806–1815

    Article  PubMed  CAS  Google Scholar 

  58. Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V (2007) Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis. J Immunol 178:7516–7519

    PubMed  CAS  Google Scholar 

  59. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    Article  PubMed  CAS  Google Scholar 

  60. Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352

    Article  PubMed  CAS  Google Scholar 

  61. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  62. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L et al (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198:1391–1402

    Article  PubMed  CAS  Google Scholar 

  63. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  PubMed  CAS  Google Scholar 

  64. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  65. Kivisaari J (1975) Oxygen and carbon dioxide tensions in healing tissue. Acta Chir Scand 141:693–696

    PubMed  CAS  Google Scholar 

  66. Crowther M, Brown NJ, Bishop ET, Lewis CE (2001) Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 70:478–490

    PubMed  CAS  Google Scholar 

  67. Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M, Chen IH, Sozzani S, Austyn JM, Mantovani A, Sica A (2008) Divergent effects of hypoxia on dendritic cell functions. Blood 112:3723–3734

    Article  PubMed  CAS  Google Scholar 

  68. Muller G, Reiterer P, Hopken UE, Golfier S, Lipp M (2003) Role of homeostatic chemokine and sphingosine-1-phosphate receptors in the organization of lymphoid tissue. Ann NY Acad Sci 987:107–116

    Article  PubMed  Google Scholar 

  69. Bosco MC, Puppo M, Blengio F, Fraone T, Cappello P, Giovarelli M, Varesio L (2008) Monocytes and dendritic cells in a hypoxic environment: spotlights on chemotaxis and migration. Immunobiology 213:733–749

    Article  PubMed  CAS  Google Scholar 

  70. Elia AR, Cappello P, Puppo M, Fraone T, Vanni C, Eva A, Musso T, Novelli F, Varesio L, Giovarelli M (2008) Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol 84:1472–1482

    Article  PubMed  CAS  Google Scholar 

  71. Ricciardi A, Elia AR, Cappello P, Puppo M, Vanni C, Fardin P, Eva A, Munroe D, Wu X, Giovarelli M, Varesio L (2008) Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression. Mol Cancer Res 6:175–185

    Article  PubMed  CAS  Google Scholar 

  72. Bosco MC, Pierobon D, Blengio F, Raggi F, Vanni C, Gattorno M, Eva A, Novelli F, Cappello P, Giovarelli M, et al (2011) Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mDCs: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood (in press)

  73. Rama I, Bruene B, Torras J, Koehl R, Cruzado JM, Bestard O, Franquesa M, Lloberas N, Weigert A, Herrero-Fresneda I et al (2008) Hypoxia stimulus: an adaptive immune response during dendritic cell maturation. Kidney Int 73:816–825

    Article  PubMed  CAS  Google Scholar 

  74. Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG, Volke M, Glasner J, Warnecke C, Wiesener MS et al (2008) Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180:4697–4705

    PubMed  CAS  Google Scholar 

  75. Spirig R, Djafarzadeh S, Regueira T, Shaw SG, von Garnier C, Takala J, Jakob SM, Rieben R, Lepper PM (2010) Effects of TLR agonists on the hypoxia-regulated transcription factor HIF-1alpha and dendritic cell maturation under normoxic conditions. PloS One 5:e0010983

    Article  PubMed  Google Scholar 

  76. Sitkovsky M, Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    Article  PubMed  CAS  Google Scholar 

  77. Kojima H, Gu H, Nomura S, Caldwell CC, Kobata T, Carmeliet P, Semenza GL, Sitkovsky MV (2002) Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha-deficient chimeric mice. Proc Natl Acad Sci USA 99:2170–2174

    Article  PubMed  CAS  Google Scholar 

  78. Lukashev D, Caldwell C, Ohta A, Chen P, Sitkovsky M (2001) Differential regulation of two alternatively spliced isoforms of hypoxia-inducible factor-1 alpha in activated T lymphocytes. J Biol Chem 276:48754–48763

    Article  PubMed  CAS  Google Scholar 

  79. Neumann AK, Yang J, Biju MP, Joseph SK, Johnson RS, Haase VH, Freedman BD, Turka LA (2005) Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci USA 102:17071–17076

    Article  PubMed  CAS  Google Scholar 

  80. Lukashev D, Klebanov B, Kojima H, Grinberg A, Ohta A, Berenfeld L, Wenger RH, Ohta A, Sitkovsky M (2006) Cutting edge: hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 177:4962–4965

    PubMed  CAS  Google Scholar 

  81. Thiel M, Caldwell CC, Kreth S, Kuboki S, Chen P, Smith P, Ohta A, Lentsch AB, Lukashev D, Sitkovsky MV (2007) Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS One 2:e853

    Article  PubMed  Google Scholar 

  82. Fredholm BB, Chern Y, Franco R, Sitkovsky M (2007) Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83:263–276

    Article  PubMed  CAS  Google Scholar 

  83. Ben-Shoshan J, Maysel-Auslender S, Mor A, Keren G, George J (2008) Hypoxia controls CD4+ CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur J Immunol 38:2412–2418

    Article  PubMed  CAS  Google Scholar 

  84. Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH (2004) Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Mol Cell Biol 24:9038–9047

    Article  PubMed  CAS  Google Scholar 

  85. Ma M, Zhang C, Liu Y, Zhou WJ, Zhang SF (2009) The influence of hypoxia inducible factor-1alpha expression on apoptosis and proliferation of T lymphocyte in the Peyer’s patches after burn with delayed fluid resuscitation in rats at high altitude. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 21:296–299

    PubMed  CAS  Google Scholar 

  86. Bowlus CL (2003) The role of iron in T cell development and autoimmunity. Autoimmun Rev 2:73–78

    Article  PubMed  CAS  Google Scholar 

  87. Leiter LM, Reuhl KR, Racis SP Jr, Sherman AR (1995) Iron status alters murine systemic lupus erythematosus. J Nutr 125:474–484

    PubMed  CAS  Google Scholar 

  88. Trigwell SM, Radford PM, Page SR, Loweth AC, James RF, Morgan NG, Todd I (2001) Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus. Clin Exp Immunol 126:242–249

    Article  PubMed  CAS  Google Scholar 

  89. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  90. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  CAS  Google Scholar 

  91. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 13:721s–726s

    Article  PubMed  CAS  Google Scholar 

  92. Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG, Coussens LM, Karin M, Goldrath AW, Johnson RS (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475

    Article  PubMed  CAS  Google Scholar 

  93. Albina JE, Mahoney EJ, Daley JM, Wesche DE, Morris SM Jr, Reichner JS (2005) Macrophage arginase regulation by CCAAT/enhancer-binding protein beta. Shock 23:168–172

    Article  PubMed  CAS  Google Scholar 

  94. Albina JE, Reichner JS (2003) Oxygen and the regulation of gene expression in wounds. Wound Repair Regen 11:445–451

    Article  PubMed  Google Scholar 

  95. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  PubMed  CAS  Google Scholar 

  96. Wang Q, Liu C, Zhu F, Liu F, Zhang P, Guo C, Wang X, Li H, Ma C, Sun W et al (2010) Reoxygenation of hypoxia-differentiated dentritic cells induces Th1 and Th17 cell differentiation. Mol Immunol 47(4):922–931

    Article  PubMed  CAS  Google Scholar 

  97. George-Chandy A, Nordstrom I, Nygren E, Jonsson IM, Postigo J, Collins LV, Eriksson K (2008) Th17 development and autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol 38:1118–1126

    Article  PubMed  CAS  Google Scholar 

  98. van Rooijen N, van Kesteren-Hendrikx E (2002) Clodronate liposomes: perspectives in research and therapeutics. J Liposome Res 12:81–94

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana Ricerca sul Cancro (AIRC), Italy; Fondazione Berlucchi, Italy; European Commission (project Mugen); Ministero Università Ricerca (MUR), Italy; Associazione Italiana Glicogenosi; Fondazione Italiana per la lotta al neuroblastoma; and Ministero della Salute and by Regione Piemonte (project number 331, August 8th, 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sica, A., Melillo, G. & Varesio, L. Hypoxia: a double-edged sword of immunity. J Mol Med 89, 657–665 (2011). https://doi.org/10.1007/s00109-011-0724-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0724-8

Keywords

Navigation