Skip to main content
Log in

Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient

  • Original article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

SOX10 protein is a key transcription factor during neural crest development. Mutations in SOX10 are associated with several neurocristopathies such as Waardenburg syndrome type IV (WS4), a congenital disorder characterized by the association of hearing loss, pigmentary abnormalities, and absence of ganglion cells in the myenteric and submucosal plexus of the gastrointestinal tract, also known as aganglionic megacolon or Hirschsprung disease (HSCR). Several mutations at this locus are known to cause a high percentage of WS4 cases, but no SOX10 mutations had been ever reported associated to isolated HSCR patient. Therefore, nonsyndromic HSCR was initially thought not to be associated to mutations at this particular locus. In the present study, we describe the evaluation of the SOX10 gene in a series of 196 isolated HSCR cases, the largest patient series evaluated so far, and report a truncating c.153–155del mutation. This is the first time that a SOX10 mutation is detected in an isolated HSCR patient, which completely changes the scenario for the implications of SOX10 mutations in human disease, giving us a new tool for genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7:338–344

    Article  PubMed  CAS  Google Scholar 

  2. Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27:1409–1420

    Article  PubMed  CAS  Google Scholar 

  3. Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    PubMed  CAS  Google Scholar 

  4. Kamachi Y, Cheah KS, Kondoh H (1999) Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol Cell Biol 19:107–120

    PubMed  CAS  Google Scholar 

  5. Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M, Goossens M (2000) Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9:1907–1917

    Article  PubMed  CAS  Google Scholar 

  6. Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M (2001) Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot–Marie–Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet 10:2783–2795

    Article  PubMed  CAS  Google Scholar 

  7. Peirano RI, Wegner M (2000) The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucleic Acids Res 28:3047–3055

    Article  PubMed  CAS  Google Scholar 

  8. Lang D, Epstein JA (2003) Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 12:937–945

    Article  PubMed  CAS  Google Scholar 

  9. Ludwig A, Rehberg S, Wegner M (2004) Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett 556:236–244

    Article  PubMed  CAS  Google Scholar 

  10. Zhu L, Lee HO, Jordan CS, Cantrell VA, Southard-Smith EM, Shin MK (2004) Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nat Genet 36:732–737

    Article  PubMed  CAS  Google Scholar 

  11. Murisier F, Guichard S, Beermann F (2007) The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes. Pigment Cell Res 20:173–184

    Article  PubMed  CAS  Google Scholar 

  12. Le Douarin NM, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Google Scholar 

  13. Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Préhu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G et al (1998) SOX10 mutations in patients with Waardenburg–Hirschsprung disease. Nat Genet 18:171–173

    Article  PubMed  CAS  Google Scholar 

  14. Read AP, Newton VE (1997) Waardenburg syndrome. J Med Genet 34:656–665

    Article  PubMed  CAS  Google Scholar 

  15. Pingault V, Guiochon-Mantel A, Bondurand N, Faure C, Lacroix C, Lyonnet S, Goossens M, Landrieu P (2000) Peripheral neuropathy with hypomyelination, chronic intestinal pseudo-obstruction and deafness: a developmental “neural crest syndrome” related to a SOX10 mutation. Ann Neurol 48:671–676

    Article  PubMed  CAS  Google Scholar 

  16. Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, Attie-Bitach T, Giurgea I, Skopinski L, Reardon W et al (2007) Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet 81:1169–1185

    Article  PubMed  CAS  Google Scholar 

  17. Verheij JB, Sival DA, van der Hoeven JH, Vos YJ, Meiners LC, Brouwer OF, van Essen AJ (2006) Shah–Waardenburg syndrome and PCWH associated with SOX10 mutations: a case report and review of the literature. Eur J Paediatr Neurol 10:11–17

    Article  PubMed  Google Scholar 

  18. Inoue K, Khajavi M, Ohyama T, Hirabayashi S, Wilson J, Reggin JD, Mancias P, Butler IJ, Wilkinson MF, Wegner M et al (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36:361–369

    Article  PubMed  CAS  Google Scholar 

  19. Sham MH, Lui V, Chen B, Fu M, Tam P (2001) Novel mutations of SOX10 suggest a dominant negative role in Waardenburg–Shah syndrome. J Med Genet 38:E30

    Article  PubMed  CAS  Google Scholar 

  20. Girard M, Goossens M (2006) Sumoylation of the SOX10 transcription factor regulates its transcriptional activity. FEBS Lett 580:1635–3641

    Article  PubMed  CAS  Google Scholar 

  21. Görlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518

    Article  PubMed  Google Scholar 

  22. Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, Warburg M, Hennekam RC, Read AP, Wegner M et al (1999) A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet 8:1785–1789

    Article  PubMed  CAS  Google Scholar 

  23. Hilleren P, Parker R (1999) Mechanisms of mRNA surveillance in eukaryotes. Annu Rev Genet 33:229–260

    Article  PubMed  CAS  Google Scholar 

  24. Pingault V, Girard M, Bondurand N, Dorkins H, Van Maldergem L, Mowat D, Shimotake T, Verma I, Baumann C, Goossens M (2002) SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism. Hum Genet 111:198–206

    Article  PubMed  CAS  Google Scholar 

  25. Touraine RL, Attié-Bitach T, Manceau E, Korsch E, Sarda P, Pingault V, Encha-Razavi F, Pelet A, Augé J, Nivelon-Chevallier A et al (2000) Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am J Hum Genet 66:1496–1503

    Article  PubMed  CAS  Google Scholar 

  26. Sznajer Y, Coldéa C, Meire F, Delpierre I, Sekhara T, Touraine RL (2008) A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease. Am J Med Genet 146A:1038–1041

    Article  PubMed  Google Scholar 

  27. Svensson PJ, Tapper-Persson M, Anvret M, Molander ML, Eng C, Nordenskjöld A (1999) Mutations in the endothelin-receptor B gene in Hirschsprung disease in Sweden. Clin Genet 55:215–217

    Article  PubMed  CAS  Google Scholar 

  28. Attié T, Till M, Pelet A, Amiel J, Edery P, Boutrand L, Munnich A, Lyonnet S (1995) Mutation of the endothelin-receptor B gene in Waardenburg–Hirschsprung disease. Hum Mol Genet 4:2407–2409

    Article  PubMed  Google Scholar 

  29. Edery P, Attié T, Amiel J, Pelet A, Eng C, Hofstra RM, Martelli H, Bidaud C, Munnich A, Lyonnet S (1996) Mutation of the endothelin-3 gene in the Waardenburg–Hirschsprung disease (Shah–Waardenburg syndrome). Nat Genet 12:442–444

    Article  PubMed  CAS  Google Scholar 

  30. Hofstra RMW, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ, Stulp RP, van Ravenswaaij-Arts C, Majoor-Krakauer D, Angrist M, Chakravarti A et al (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah–Waardenburg syndrome). Nat Genet 12:445–447

    Article  PubMed  CAS  Google Scholar 

  31. Pingault V, Bondurand N, Le Caignec C, Tardieu S, Lemort N, Dubourg O, Le Guern E, Goossens M, Boespflug-Tanguy O (2001) The SOX10 transcription factor: evaluation as a candidate gene for central and peripheral hereditary myelin disorders. J Neurol 248:496–499

    Article  PubMed  CAS  Google Scholar 

  32. Hong CS, Saint-Jeannet JP (2005) Sox proteins and neural crest development. Semin Cell Dev Biol 16:694–703

    Article  PubMed  CAS  Google Scholar 

  33. Maka M, Scolt CC, Werner M (2005) Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol 277:155–169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients who participated in the study as well as their families for their collaboration. This study was funded by Fondo de Investigación Sanitaria, Spain (PI070080 and PI071315 for the E-Rare project) and Consejeria de Innovación Ciencia y Empresa (CTS 2590). The CIBER de Enfermedades Raras is an initiative of the ISCIII. ASM is predoctoral fellow founded by Instituto de Salud Carlos III, Spain.

Competing interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salud Borrego.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

PCR primers and conditions for mutational screening. TaH and TiH are hybridization temperature and hybridization time for PCR, respectively, in the general conditions: (95°C-300 s)–[(95°C-30 s)–(TaH-TiH)–(72°C-30 s)] × 35–(72°C-420 s). (DOC 41 kb)

Supplementary Table 2

QMF-PCR primer sequences. PCR conditions were as follow: (95°C-600 s)→[(92°C-15 s)→(60°C-60 s)] × 40. (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Mejías, A., Watanabe, Y., M. Fernández, R. et al. Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient. J Mol Med 88, 507–514 (2010). https://doi.org/10.1007/s00109-010-0592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0592-7

Keywords

Navigation