Skip to main content

Advertisement

Log in

Metalloproteinase alterations in the bone marrow of ALS patients

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, nowadays considered as suitable candidate for autologous stem therapy with bone marrow (BM). A careful characterization of BM stem cell (SC) compartment is mandatory before its extensive application to clinic. Indeed, widespread systemic involvement has been recently advocated given that non-neuronal neighboring cells actively influence the pathological neuronal loss. We therefore investigated BM samples from 21 ALS patients and reported normal hematopoietic biological properties while an atypical behavior and impaired SC capabilities affected only the mesenchymal compartment. Moreover, by quantitative real-time approach, we observed altered Collagen IV and Metalloproteinase-9 levels in patients’ derived mesenchymal stem cells (MSCs). Widespread metalloproteinase (MMPs) and their tissue inhibitor (TIMPs) alterations were established by multiplex ELISA analysis, demonstrating diffuse enzymatic variations in MSC compartment. Since MMPs act as fundamental effectors of extra-cellular matrix remodeling and stem cell mobilization, their modifications in ALS may influence reparative mechanisms effective in counteracting the pathology. In conclusion, ALS is further confirmed to be a systemic disease, not restricted to the nervous system, but affecting also the BM stromal compartment, even in sporadic cases. Therefore, therapeutic implantation of autologous BM derived SC in ALS patients needs to be carefully reevaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, Bowser R, Hamilton R, Wood TD, Cleveland DW, Lingappa VRLiu J (2007) Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 104:12524–12529

    Article  PubMed  CAS  Google Scholar 

  2. Kikuchi H, Almer G, Yamashita S, Guegan C, Nagai M, Xu Z, Sosunov AA, McKhann GM, Przedborski S 2nd (2006) Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model. Proc Natl Acad Sci U S A 103:6025–6030

    Article  PubMed  CAS  Google Scholar 

  3. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–2070

    Article  PubMed  CAS  Google Scholar 

  4. Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701

    Article  PubMed  CAS  Google Scholar 

  5. Ono S (2000) The skin in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:191–199

    Article  PubMed  CAS  Google Scholar 

  6. Fang L, Huber-Abel F, Teuchert M, Hendrich C, Dorst J, Schattauer D, Zettlmeissel H, Wlaschek M, Scharffetter-Kochanek K, Tumani H, Ludolph AC, Brettschneider J (2009) Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J Neurol Sci 285:62–66

    Article  PubMed  CAS  Google Scholar 

  7. Ludolph AC (2006) Matrix metalloproteinases—a conceptional alternative for disease-modifying strategies in ALS/MND? Exp Neurol 201:277–280

    Article  PubMed  CAS  Google Scholar 

  8. Yamanaka K, Boillee S, Roberts EA, Garcia ML, McAlonis-Downes M, Mikse OR, Cleveland DWGoldstein LS (2008) Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc Natl Acad Sci U S A 105:7594–7599

    Article  PubMed  Google Scholar 

  9. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa HCleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    Article  PubMed  CAS  Google Scholar 

  10. Lobsiger CS, Cleveland DW (2007) Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 10:1355–1360

    Article  PubMed  CAS  Google Scholar 

  11. Hedlund E, Hefferan MP, Marsala MIsacson O (2007) Cell therapy and stem cells in animal models of motor neuron disorders. Eur J NeuroSci 26:1721–1737

    Article  PubMed  Google Scholar 

  12. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel SSharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  13. Bossolasco P, Cova L, Calzarossa C, Rimoldi SG, Borsotti C, Deliliers GL, Silani V, Soligo DPolli E (2005) Neuro-glial differentiation of human bone marrow stem cells in vitro. Exp Neurol 193:312–325

    Article  PubMed  CAS  Google Scholar 

  14. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillee S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LSCleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117

    Article  PubMed  CAS  Google Scholar 

  15. Badayan I, Cudkowicz ME (2008) Is it too soon for mesenchymal stem cell trials in people with ALS? Amyotroph Lateral Scler 9:321–322

    Article  PubMed  Google Scholar 

  16. Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, Shinoda K, Sugino MHanafusa T (2006) Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 66:265–267

    Article  PubMed  CAS  Google Scholar 

  17. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez de Aguilar JL, Echaniz-Laguna A, Fergani A, Rene F, Meininger V, Loeffler JPDupuis L (2007) Amyotrophic lateral sclerosis: all roads lead to Rome. J Neurochem 101:1153–1160

    Article  PubMed  CAS  Google Scholar 

  19. Fowlkes JL, Winkler MK (2002) Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability. Cytokine Growth Factor Rev 13:277–287

    Article  PubMed  CAS  Google Scholar 

  20. Vercelli A, Mereuta OM, Garbossa D, Muraca G, Mareschi K, Rustichelli D, Ferrero I, Mazzini L, Madon E, Fagioli F (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 31:395–405

    Article  PubMed  CAS  Google Scholar 

  21. Habisch HJ, Janowski M, Binder D, Kuzma-Kozakiewicz M, Widmann A, Habich A, Schwalenstocker B, Hermann A, Brenner R, Lukomska B, Domanska-Janik K, Ludolph ACStorch A (2007) Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm 114:1395–1406

    Article  PubMed  Google Scholar 

  22. Tichon A, Gowda BK, Slavin S, Gazit A, Priel E (2009) Telomerase activity and expression in adult human mesenchymal stem cells derived from amyotrophic lateral sclerosis individuals. Cytotherapy 11:837–848

    Article  PubMed  CAS  Google Scholar 

  23. Boucherie C, Caumont AS, Maloteaux JMHermans E (2008) In vitro evidence for impaired neuroprotective capacities of adult mesenchymal stem cells derived from a rat model of familial amyotrophic lateral sclerosis (hSOD1(G93A)). Exp Neurol 212:557–561

    Article  PubMed  CAS  Google Scholar 

  24. Ferrero I, Mazzini L, Rustichelli D, Gunetti M, Mareschi K, Testa L, Nasuelli N, Oggioni GDFagioli F (2008) Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant 17:255–266

    Article  PubMed  Google Scholar 

  25. Silva WA Jr, Covas DT, Panepucci RA, Proto-Siqueira R, Siufi JL, Zanette DL, Santos ARZago MA (2003) The profile of gene expression of human marrow mesenchymal stem cells. Stem Cells 21:661–669

    Article  PubMed  CAS  Google Scholar 

  26. Ono S, Imai T, Shimizu N, Nakayama M, Yamano TTsumura M (2000) Serum markers of type I collagen synthesis and degradation in amyotrophic lateral sclerosis. Eur Neurol 44:49–56

    Article  PubMed  CAS  Google Scholar 

  27. Provinciali L, Cangiotti A, Tulli D, Carboni VCinti S (1994) Skin abnormalities and autonomic involvement in the early stage of amyotrophic lateral sclerosis. J Neurol Sci 126:54–61

    Article  PubMed  CAS  Google Scholar 

  28. Ono S, Imai T, Munakata S, Takahashi K, Kanda F, Hashimoto K, Yamano T, Shimizu N, Nagao KYamauchi M (1998) Collagen abnormalities in the spinal cord from patients with amyotrophic lateral sclerosis. J Neurol Sci 160:140–147

    Article  PubMed  CAS  Google Scholar 

  29. Beuche W, Yushchenko M, Mader M, Maliszewska M, Felgenhauer KWeber F (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. NeuroReport 11:3419–3422

    Article  PubMed  CAS  Google Scholar 

  30. Demestre M, Parkin-Smith G, Petzold APullen AH (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159:146–154

    Article  PubMed  CAS  Google Scholar 

  31. Kiaei M, Kipiani K, Calingasan NY, Wille E, Chen J, Heissig B, Rafii S, Lorenzl SBeal MF (2007) Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 205:74–81

    Article  PubMed  CAS  Google Scholar 

  32. Lim GP, Backstrom JR, Cullen MJ, Miller CA, Atkinson RDTokes ZA (1996) Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J Neurochem 67:251–259

    Article  PubMed  CAS  Google Scholar 

  33. Schoser BG, Blottner D (1999) Matrix metalloproteinases MMP-2, MMP-7 and MMP-9 in denervated human muscle. NeuroReport 10:2795–2797

    Article  PubMed  CAS  Google Scholar 

  34. Lorenzl S, Narr S, Angele B, Krell HW, Gregorio J, Kiaei M, Pfister HW, Beal MF (2006) The matrix metalloproteinases inhibitor Ro 26-2853 extends survival in transgenic ALS mice. Exp Neurol 200:166–171

    PubMed  CAS  Google Scholar 

  35. Dewil M, Schurmans C, Starckx S, Opdenakker G, Van Den Bosch LRobberecht W (2005) Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis. NeuroReport 16:321–324

    Article  PubMed  CAS  Google Scholar 

  36. Lee JK, Shin JH, Suh J, Choi IS, Ryu KSGwag BJ (2008) Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis. Neurobiol Dis 30:174–185

    Article  PubMed  CAS  Google Scholar 

  37. Rathke-Hartlieb S, Budde P, Ewert S, Schlomann U, Staege MS, Jockusch H, Bartsch JWFrey J (2000) Elevated expression of membrane type 1 metalloproteinase (MT1-MMP) in reactive astrocytes following neurodegeneration in mouse central nervous system. FEBS Lett 481:227–234

    Article  PubMed  CAS  Google Scholar 

  38. Lorenzl S, Albers DS, LeWitt PA, Chirichigno JW, Hilgenberg SL, Cudkowicz MEBeal MF (2003) Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J Neurol Sci 207:71–76

    Article  PubMed  CAS  Google Scholar 

  39. Discher DE, Mooney DJZandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  PubMed  CAS  Google Scholar 

  40. Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, Del Bo RComi GP (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518–2532

    Article  PubMed  Google Scholar 

  41. Zeni P, Doepker E, Schulze-Topphoff U, Huewel S, Tenenbaum TGalla HJ (2007) MMPs contribute to TNF-alpha-induced alteration of the blood-cerebrospinal fluid barrier in vitro. Am J Physiol Cell Physiol 293:C855–C864

    Article  PubMed  CAS  Google Scholar 

  42. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SVSanberg PR (2007) Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res 1157:126–137

    Article  PubMed  CAS  Google Scholar 

  43. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DWZlokovic BV (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422

    Article  PubMed  CAS  Google Scholar 

  44. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JMDoetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Article  PubMed  CAS  Google Scholar 

  45. Liu ZMartin LJ (2006) The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain. J Comp Neurol 497:468–488

    Article  Google Scholar 

  46. Bacigalupo A, Valle M, Podesta M, Pitto A, Zocchi E, De Flora A, Pozzi S, Luchetti S, Frassoni F, Van Lint MTPiaggio G (2005) T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia. Exp Hematol 33:819–827

    Article  PubMed  CAS  Google Scholar 

  47. Mazzini L, Fagioli FBoccaletti R (2004) Stem-cell therapy in amyotrophic lateral sclerosis. Lancet 364:1936–1937

    Article  PubMed  Google Scholar 

  48. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso RMadon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4:158–161

    Article  PubMed  Google Scholar 

  49. Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, Testa L, Stecco A, Tarletti R, Miglioretti M, Fava E, Nasuelli N, Cisari C, Massara M, Vercelli R, Oggioni GD, Carriero A, Cantello R, Monaco F, Fagioli F (2009). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a phase I clinical trial. Exp Neurol (in press)

  50. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Boccaletti R, Testa L, Livigni SFagioli F (2006) Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol Res 28:523–526

    Article  PubMed  Google Scholar 

  51. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni GD, Testa LFagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265:78–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We dedicate this work to the loving memory of Professor Davide Soligo.

Author contributions

Patrizia Bossolasco and Lidia Cova contributed in conception and design, experiments, data analysis and interpretation, and writing the manuscript. Calzarossa Cinzia performed experiments and analyzes data. Federica Servida performed experiments. Mencacci Niccolò Emanuele contributed in the collection and critical classification of clinical data. Francesco Onida, Elio Polli, and Lambertenghi Deliliers Giorgio contributed to the final approval of manuscript. Vincenzo Silani contributed in the probation of patients and final approval of manuscript.

Competing interests statement

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Bossolasco.

Additional information

Patrizia Bossolasco and Lidia Cova contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossolasco, P., Cova, L., Calzarossa, C. et al. Metalloproteinase alterations in the bone marrow of ALS patients. J Mol Med 88, 553–564 (2010). https://doi.org/10.1007/s00109-009-0584-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0584-7

Keywords

Navigation