Skip to main content

Advertisement

Log in

The primacy of CD8 T lymphocytes in type 1 diabetes and implications for therapies

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Type I diabetes (TID) is an autoimmune disease in which insulin-secreting beta cells of the pancreatic islets are destroyed by T lymphocytes. Until the 1990s, the prevailing dogma was that the attack was attributable to rogue T lymphocytes bearing CD4 markers on their surface (CD4 T helper lymphocytes). Today, the prevailing view is that rogue T cells bearing CD8 markers or cytotoxic CD8 T lymphocytes are also important and perhaps the foremost contributors to beta-cell death. Recognizing CD8 T-cell subsets as the prime culprits has helped to trace the disease's pathogenesis to abnormal T-cell education. Defective education can occur when antigen-presenting cells fail to assemble and present self-antigens to naïve T cells. The failure in that process, normally designed to prevent T cells' attack on the body's own antigens, enables self-reactive T cells to escape into the circulation. Once released, the self-reactive CD8 T cells kill specific self-antigens, which, in the case of TID, include insulin and other key proteins associated with beta cell functions. Abnormalities during T-cell education have been mapped in part to genetic defects in specific gene-encoding regions of the major histocompatibility complex class I region and to proteins that assemble self-peptides into the MHC class I structure that map within the MHC class II region. Two decades of research have led to understanding of genetic and functional defects in the immune system, placing us at the threshold of finding new therapeutic strategies aimed at eliminating autoreactive CD8 T cells, while preserving healthy immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. DCCT Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group [see comments]. New Engl J Med 329:977–986

    Article  Google Scholar 

  2. Dahlquist G, Kallen B (2005) Mortality in childhood-onset type 1 diabetes: a population-based study. Diabetes Care 28:2384–2387

    Article  PubMed  Google Scholar 

  3. McDevitt H, Unanue E (2008) Autoimmune diabetes mellitus—much progress, but many challenges. Adv Immunol 100:1–12

    Article  CAS  PubMed  Google Scholar 

  4. Haskins K, Portas M, Bradley B, Wegmann D, Lafferty K (1988) T-lymphocyte clone specific for pancreatic islet antigen. Diabetes 37:1444–1448

    Article  CAS  PubMed  Google Scholar 

  5. Yan G, Shi L, Penfornis A, Faustman DL (2003) Impaired processing and presentation by MHC class II proteins in human diabetic cells. J Immunol 170:620–627

    CAS  PubMed  Google Scholar 

  6. Faustman D, Li X, Lin HY, Fu Y, Eisenbarth G, Avruch J, Guo J (1991) Linkage of faulty major histocompatibility complex class I to autoimmune diabetes. Science 254:1756–1761

    Article  CAS  PubMed  Google Scholar 

  7. Yan G, Fu Y, Faustman DL (1997) Reduced expression of Tap1 and Lmp2 antigen processing genes in the nonobese diabetic (NOD) mouse due to a mutation in their shared bidirectional promoter. J Immunol 159:3068–3080

    CAS  PubMed  Google Scholar 

  8. Townsend AR, Gotch FM, Davey J (1985) Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42:457–467

    Article  CAS  PubMed  Google Scholar 

  9. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  CAS  PubMed  Google Scholar 

  10. Ishioka GY, Colon S, Miles C, Grey HM, Chesnut RW (1989) Induction of class I MHC-restricted, peptide-specific cytolytic T lymphocytes by peptide priming in vivo. J Immunol 143:1094–1100

    CAS  PubMed  Google Scholar 

  11. Li F, Guo J, Fu Y, Yan G, Faustman D (1994) Abnormal class I assembly and peptide presentation in the diabetic NOD mouse. Proc Natl Acad Sci USA 91:11128–11132

    Article  CAS  PubMed  Google Scholar 

  12. van Bleek GM, Nathenson SG (1991) The structure of the antigen-binding groove of major histocompatibility complex class I molecules determines specific selection of self-peptides. Proc Natl Acad Sci U S A 88:11032–11036

    Article  PubMed  Google Scholar 

  13. Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC (1991) Identification of self peptides bound to purified HLA-B27. Nature 353:326–329

    Article  CAS  PubMed  Google Scholar 

  14. Garrett TP, Saper MA, Bjorkman PJ, Strominger JL, Wiley DC (1989) Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 342:692–696

    Article  CAS  PubMed  Google Scholar 

  15. Van Bleek GM, Nathenson SG (1990) Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 348:213–216

    Article  PubMed  Google Scholar 

  16. Yan G, Shi L, Faustman D (1999) Novel splicing of the human MHC-encoded peptide transporter confers unique properties. J Immunol 162:852–859

    CAS  PubMed  Google Scholar 

  17. Qu HQ, Lu Y, Marchand L, Bacot F, Frechette R, Tessier MC, Montpetit A, Polychronakos C (2007) Genetic control of alternative splicing in the TAP2 gene: possible implication in the genetics of type 1 diabetes. Diabetes 56:270–275

    Article  CAS  PubMed  Google Scholar 

  18. Fu Y, Yan G, Shi L, Faustman D (1998) Antigen processing and autoimmunity. Evaluation of mRNA abundance and function of HLA-linked genes. Ann NY Acad Sci 842:138–155

    Article  CAS  PubMed  Google Scholar 

  19. Yan G, Shi L, Fu Y, Wang X, Schoenfeld D, Ma L, Penfornis A, Gebel H, Faustman DL (1997) Screening of the TAP1 gene by denaturing gradient gel electrophoresis in insulin-dependent diabetes mellitus: detection and comparison of new polymorphisms between patients and controls. Tissue Antigens 50:576–585

    Article  CAS  PubMed  Google Scholar 

  20. Ma L, Penfornis A, Wang X, Schoenfeld D, Tuomilehto-Wolf E, Metcalfe K, Hitman G, Faustman D (1997) Evaluation of TAP1 polymorphisms with insulin dependent diabetes mellitus in Finnish diabetic patients. The Childhood Diabetes in Finland (DiMe) Study Group. Hum Immunol 53:159–166

    Article  CAS  PubMed  Google Scholar 

  21. Langholz B, Tuomilehto-Wolf E, Thomas D, Pitkaniemi J, Tuomilehto J (1995) Variation in HLA-associated risk of childhood insulin-dependent diabetes in the Finnish population. I. Allele effects at A, B, and DR loci. DiMe Study Group. Childhood Diabetes in Finland. Genet Epidemiol 12:441–453

    Article  CAS  PubMed  Google Scholar 

  22. Noble JA, Valdes AM, Bugawan TL, Apple RJ, Thomson G, Erlich HA (2002) The HLA class I A locus affects susceptibility to type 1 diabetes. Hum Immunol 63:657–664

    Article  CAS  PubMed  Google Scholar 

  23. Tait BD, Colman PG, Morahan G, Marchinovska L, Dore E, Gellert S, Honeyman MC, Stephen K, Loth A (2003) HLA genes associated with autoimmunity and progression to disease in type 1 diabetes. Tissue Antigens 61:146–153

    Article  CAS  PubMed  Google Scholar 

  24. Krause S, Kuckelkorn U, Dorner T, Burmester GR, Feist E, Kloetzel PM (2006) Immunoproteasome subunit LMP2 expression is deregulated in Sjogren's syndrome but not in other autoimmune disorders. Ann Rheum Dis 65:1021–1027

    Article  CAS  PubMed  Google Scholar 

  25. Fu Y, Nathan DM, Li F, Li X, Faustman DL (1993) Defective major histocompatibility complex class I expression on lymphoid cells in autoimmunity. J Clin Invest 91:2301–2307

    Article  CAS  PubMed  Google Scholar 

  26. Wong FS, Karttunen J, Dumont C, Wen L, Visintin I, Pilip IM, Shastri N, Pamer EG, Janeway CA Jr (1999) Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library [see comments]. Nat Med 5:1026–1031

    Article  CAS  PubMed  Google Scholar 

  27. Christianson SW, Shultz LD, Leiter EH (1993) Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42:44–55

    Article  CAS  PubMed  Google Scholar 

  28. Yagi H, Matsumoto M, Kunimoto K, Kawaguchi J, Makino S, Harada M (1992) Analysis of the roles of CD4+ and CD8+ T cells in autoimmune diabetes of NOD mice using transfer to NOD athymic nude mice. Eur J Immunol 22:2387–2393

    Article  CAS  PubMed  Google Scholar 

  29. Kodama S, Kuhtreiber W, Fujimura S, Dale EA, Faustman DL (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227

    Article  CAS  PubMed  Google Scholar 

  30. Ryu S, Kodama S, Ryu K, Schoenfeld DA, Faustman DL (2001) Reversal of established autoimmune diabetes by restoration of endogenous beta cell function. J Clin Invest 108:63–72

    CAS  PubMed  Google Scholar 

  31. Ban L, Zhang J, Wang L, Kuhtreiber W, Burger D, Faustman DL (2008) Selective death of autoreactive T cells in human diabetes by TNF or TNF receptor 2 agonism. Proc Natl Acad Sci U S A 105:13644–13649

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise L. Faustman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faustman, D.L., Davis, M. The primacy of CD8 T lymphocytes in type 1 diabetes and implications for therapies. J Mol Med 87, 1173–1178 (2009). https://doi.org/10.1007/s00109-009-0516-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0516-6

Keywords

Navigation