Skip to main content
Log in

Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription

Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Normal genital skin fibroblasts (GSF) and the human prostate carcinoma cell line LNCaP have been used widely as cell culture models of genital origin to study androgen receptor (AR) signaling. We demonstrate that LNCaP shows a reproducible response to androgens as assessed using cDNA-microarrays representing approximately 32,000 unique human genes, whereas several independent GSF strains are virtually unresponsive. We show that LNCaP cells express markedly higher AR protein levels likely contributing to the observed differences of androgen responsiveness. However, previous data suggested that AR-expression levels alone do not determine androgen responsiveness of human GSF compared to LNCaP. We hypothesized that cell-specific differences in expression levels of AR coregulators might contribute to differences in androgen responsiveness and might be found by comparing LNCaP and GSFs. Using the Canadian McGill-database of AR coregulators (http://www.mcgill.ca/androgendb), we identified 61 AR-coregulator genes represented by 282 transcripts on our microarray platform that was used to measure transcript profiles of LNCaP and GSF cells. Baseline expression levels of 48 AR-coregulator transcripts representing 33 distinct genes showed significant differences between GSF and LNCaP, four of which we confirmed by reverse transcriptase polymerase chain reaction. Compared to LNCaP, GSFs displayed significant upregulation of AR coregulators that can function as repressors of AR-transactivation, such as caveolin 1. Analysis of a recently published comprehensive dataset of 115 microarrays representing 35 different human tissues revealed tissue-specific signatures of AR coregulators that segregated with ontogenetically related groups of tissues (e.g., lymphatic system and genital tissues, brain). Our data demonstrate the existence of cell-line and tissue-specific expression patterns of molecules with documented AR coregulatory functions. Therefore, differential expression patterns of AR coregulators could modify tissue-specificity and diversity of androgen actions in development, physiology, and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hiort O, Holterhus PM (2000) The molecular basis of male sexual differentiation. Eur J Endocrinol 142:101–1101

    Article  PubMed  CAS  Google Scholar 

  2. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425

    Article  PubMed  CAS  Google Scholar 

  3. Claustres M, Sultan C (1988) Androgen and erythropoiesis: evidence for an androgen receptor in erythroblasts from human bone marrow cultures. Horm Res 29:17–22

    Article  PubMed  CAS  Google Scholar 

  4. Cohen C, Lawson D, DeRose PB (1998) Sex and androgenic steroid receptor expression in hepatic adenomas. Hum Pathol 29:1428–1432

    Article  PubMed  CAS  Google Scholar 

  5. Dorner G, Gotz F, Rohde W, Plagemann A, Lindner R, Peters H Ghanaati Z (2001) Genetic and epigenetic effects on sexual brain organization mediated by sex hormones. Neuro Endocrinol Lett 22:403–409

    PubMed  CAS  Google Scholar 

  6. Meyer-Bahlburg HF, Dolezal C, Baker SW, Carlson AD, Obeid JS, New MI (2004) Prenatal androgenization affects gender-related behavior but not gender identity in 5–12-year-old girls with congenital adrenal hyperplasia. Arch Sex Behav 33:97–104

    Article  PubMed  Google Scholar 

  7. Andriole G, Bruchovsky N, Chung LW, Matsumoto AM, Rittmaster R, Roehrborn C, Russell D, Tindall D (2004) Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J Urol 172:1399–1403

    Article  PubMed  CAS  Google Scholar 

  8. Culig Z, Klocker H, Bartsch G, Steiner H, Hobisch A (2003) Androgen receptors in prostate cancer. J Urol 170:1363–1369

    Article  PubMed  CAS  Google Scholar 

  9. Fuller PJ (1991) The steroid receptor superfamily: mechanisms of diversity. FASEB J 5:3092–3099

    PubMed  CAS  Google Scholar 

  10. Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396–1404

    Article  PubMed  CAS  Google Scholar 

  11. Laudet V, Gronemeyer H (2002) The Nuclear Receptor FactsBook. First edition. Academic, London, UK

    Google Scholar 

  12. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci USA 101:4758–4763

    Article  PubMed  CAS  Google Scholar 

  13. Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200

    Article  PubMed  CAS  Google Scholar 

  14. Hong H, Kohli K, Garabedian MJ, Stallcup MR (1997) GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17:2735–2744

    PubMed  CAS  Google Scholar 

  15. Linja MJ, Porkka KP, Kang Z, Savinainen KJ, Janne OA, Tammela TL, Vessella RL, Palvimo JJ, Visakorpi T (2004) Expression of androgen receptor coregulators in prostate cancer. Clin Cancer Res 10:1032–1040

    Article  PubMed  CAS  Google Scholar 

  16. Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyri-bonucleic acid and transcription factors. Endocr Rev 14:459–479

    Article  PubMed  CAS  Google Scholar 

  17. McEwan IJ (2004) Essays in biochemistry, the nuclear receptor family. In: Kumar R, Johnson BH, Thompson EB (eds) Overview of the structural basis for transcription regulation by nuclear hormone receptors, 1st edn. Portland Press, London, UK, pp. 27–39

    Google Scholar 

  18. Holterhus PM, Hiort O, Demeter J, Brown PO, Brooks JD (2003) Differential gene-expression patterns in genital fibroblasts of normal males and 46,XY females with androgen insensitivity syndrome: evidence for early programming involving the androgen receptor. Genome Biol 4:R37

    Article  PubMed  Google Scholar 

  19. Castoria G, Lombardi M, Barone MV, Bilancio A, Di Domenico M, Bottero D, Vitale F, Migliaccio A, Auricchio F (2003) Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 161:547–556

    Article  PubMed  CAS  Google Scholar 

  20. DePrimo SE, Diehn M, Nelson JB, Reiter RE, Matese J, Fero M, Tibshirani R, Brown PO, Brooks JD (2002) Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 3:R32

    Article  Google Scholar 

  21. McPhaul MJ, Deslypere JP, Allman DR, Gerard RD (1993) The adenovirus-mediated delivery of a reporter gene permits the assessment of androgen receptor function in genital skin fibroblast cultures. Stimulation of Gs and inhibition of G(o). J Biol Chem 268:26063–26066

    PubMed  CAS  Google Scholar 

  22. McPhaul MJ, Schweikert HU, Allman DR, McPhaul MJ, Schweikert HU, Allman DR (1997) Assessment of androgen receptor function in genital skin fibroblasts using a recombinant adenovirus to deliver an androgen-responsive reporter gene. J Clin Endocrinol Metab 82:1944–1948

    Article  PubMed  CAS  Google Scholar 

  23. Holterhus PM, Salzburg J, Werner R, Hiort O (2005) Transactivation properties of wild-type and mutant androgen receptors in transiently transfected primary human fibroblasts. Horm Res 63:152–158

    Article  PubMed  CAS  Google Scholar 

  24. Gottlieb B, Beitel LK, Wu JH, Trifiro M (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23:527–533

    Article  PubMed  CAS  Google Scholar 

  25. Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR (2005) A DNA microarray survey of gene expression in normal human tissues. Genome Biol 6:R22

    Article  PubMed  Google Scholar 

  26. Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T, Rees CA, Cherry JM, Botstein D, Brown PO, Alizadeh AA (2003) SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 31:219–223

    Article  PubMed  CAS  Google Scholar 

  27. Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, Hernandez-Boussard T, Jin H, Kaloper M, Matese JC, Schroeder M, Brown PO, Botstein D, Sherlock G (2003) The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res 31:94–96

    Article  PubMed  CAS  Google Scholar 

  28. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  29. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  31. Cleutjens CB, Steketee K, van Eekelen CC, van der Korput JA, Brinkmann AO, Trapman J (1997) Both androgen receptor and glucocorticoid receptor are able to induce prostate-specific antigen expression, but differ in their growth-stimulating properties of LNCaP cells. Endocrinology 138:5293–5300

    Article  PubMed  CAS  Google Scholar 

  32. Rubin MA, Varambally S, Beroukhim R, Tomlins SA, Rhodes DR, Paris PL, Hofer MD, Storz-Schweizer M, Kuefer R, Fletcher JA, Hsi BL, Byrne JA, Pienta KJ, Collins C, Sellers WR, Chinnaiyan AM (2004) Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer Res 64:3814–3822

    Article  PubMed  CAS  Google Scholar 

  33. Segawa T, Nau ME, Xu LL, Chilukuri RN, Makarem M, Zhang W, Petrovics G, Sesterhenn IA, McLeod DG, Moul JW, Vahey M, Srivastava S (2002) Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21:8749–8758

    Article  PubMed  CAS  Google Scholar 

  34. Dhanasekaran SM, Dash A, Yu J, Maine IP, Laxman B, Tomlins SA, Creighton CJ, Menon A, Rubin MA, Chinnaiyan AM (2005) Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty. FASEB J 19:243–245

    PubMed  CAS  Google Scholar 

  35. Qi H, Labrie Y, Grenier J, Fournier A, Fillion C, Labrie C (2001) Androgens induce expression of SPAK, a STE20/SPS1-related kinase, in LNCaP human prostate cancer cells. Mol Cell Endocrinol 182:181–192

    Article  PubMed  CAS  Google Scholar 

  36. Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW, Srivastava S (2000) A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics 66:257–263

    Article  PubMed  CAS  Google Scholar 

  37. Nasu Y, Timme TL, Yang G, Bangma CH, Li L, Ren C, Park SH, DeLeon M, Wang J, Thompson TC (1998) Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat Med 4:1062–1064

    Article  PubMed  CAS  Google Scholar 

  38. Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 98:7200–7205

    Article  PubMed  CAS  Google Scholar 

  39. Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z (2001) SMAD3 represses androgen receptor-mediated transcription. Cancer Res 61:2112–2118

    PubMed  CAS  Google Scholar 

  40. Schneikert J, Peterziel H, Defossez PA, Klocker H, Launoit Y, Cato AC (1996) Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression. J Biol Chem 271:23907–23913

    Article  PubMed  CAS  Google Scholar 

  41. Petre CE, Wetherill YB, Danielsen M, Knudsen KE (2002) Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem 277:2207–2215

    Article  PubMed  CAS  Google Scholar 

  42. Chen S, Wang J, Yu G, Liu W, Pearce D (1997) Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem 272:14087–14092

    Article  PubMed  CAS  Google Scholar 

  43. Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA (2000) Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol 167:139–150

    Article  PubMed  CAS  Google Scholar 

  44. Wang M, Wang J, Zhang Z, Zhao Z, Zhang R, Hu X, Tan T, Luo S, Luo Z (2005) Dissecting phenotypic variation among AIS patients. Biochem Biophys Res Commun 335:335–342

    Article  PubMed  CAS  Google Scholar 

  45. Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B (1999) The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19:6085–6097

    PubMed  CAS  Google Scholar 

  46. Pratt WB (1992) Control of steroid receptor function and cytoplasmic-nuclear transport by heat shock proteins. Bioessays 14:841–848

    Article  PubMed  CAS  Google Scholar 

  47. Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276:13442–13451

    Article  PubMed  CAS  Google Scholar 

  48. Cho KA, Ryu SJ, Park JS, Jang IS, Ahn JS, Kim KT, Park SC (2003) Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem 278:27789–27795

    Article  PubMed  CAS  Google Scholar 

  49. Izbicka E, MacDonald JR, Davidson K, Lawrence RA, Gomez L, Von Hoff DD (1999) 5,6 Dihydro-5′-azacytidine (DHAC) restores androgen responsiveness in androgen-insensitive prostate cancer cells. Anticancer Res 19:1285–1291

    PubMed  CAS  Google Scholar 

  50. Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AHFM, Günther T, Buettmer R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  51. O’Malley B (2005) The biological and medical implications of steroid receptor coactivators. Presidential Plenary Session. Annual Meeting of the Endocrine Society, San Diego, CA, USA

  52. Adachi M, Takayanagi R, Tomura A, Imasaki K, Kato S, Goto K, Yanase T, Ikuyama S, Nawata H (2000) Androgen-insensitivity syndrome as a possible coactivator disease. N Engl J Med 343:856–862

    Article  PubMed  CAS  Google Scholar 

  53. Deeb A, Mason C, Lee YS, Hughes IA (2005) Correlation between genotype, phenotype and sex of rearing in 111 patients with partial androgen insensitivity syndrome. Clin Endocrinol 63:56–62

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Deutsche Forschungsgemeinschaft (DFG) (grants Ho 2073/2-1, 2-2 and KFO 111/1-1, and 1-2, projects C and D to P.M.H.) with support by the Medical Faculty of Lübeck of the University of Schleswig-Holstein, Germany (P.M.H and O.H.), and the Doris Duke Charitable Foundation (J.D.B.). We thank Genevieve Vidanes, Nicole Homburg, Christine Marschke, Erika Meinecke, and Dagmar Struve for excellent technical assistance. We also thank the scientists and staff of the Stanford Microarray Facility and the Stanford Microarray Database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul-Martin Holterhus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bebermeier, JH., Brooks, J.D., DePrimo, S.E. et al. Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription. J Mol Med 84, 919–931 (2006). https://doi.org/10.1007/s00109-006-0081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0081-1

Keywords

Navigation