Skip to main content

Advertisement

Log in

Nonviral DNA vectors for immunization and therapy: design and methods for their obtention

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The use of plasmid DNA for vaccination and therapy is a relatively novel technology, with advantages and limitations as with other gene transfer techniques. The technology is based on DNA vectors designed for administering genes coding for relevant proteins into a given organism, fulfilling requirements of the regulatory agencies that once properly formulated and delivered the desired vaccine/therapeutic effect can be achieved. Starting from conventional plasmid DNA vectors currently tested in clinical trials, improvement resulted in bacterial element-less vectors, increasing the complexity of the developmental process. The present review focuses on systems described for generating these nonviral DNA vectors for immunization and therapy from bacterial hosts (conventional and conditionally replicating plasmids, nonreplicating minicircles, and linear dumbbell-shaped expression cassettes) in vivo or in vitro. Additionally, nontherapeutic genetic sequences with a negative or positive effect according to the specific application are described, bringing a better comprehension of the technology’s state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

COR :

Conditional origin of replication

ISS :

Immunostimulatory sequences

MIDGE :

Minimalistic immunogenic defined gene expression

PCR :

Polymerase chain reaction

References

  1. Davis HL, Demeneix BA, Quantin B, Coulombe J, Whalen RG (1993) Plasmid DNA is superior to viral vectors for direct gene transfer into adult mouse skeletal muscle. Hum Gene Ther 4:733–740

    CAS  PubMed  Google Scholar 

  2. Alpar HO, Bramwell VW (2002) Current status of DNA vaccines and their route of administration. Crit Rev Ther Drug Carrier Syst 19:307–383

    PubMed  Google Scholar 

  3. Montgomery DL, Shiver JW, Leander KR, Perry HC, Friedman A, Martinez D, Ulmer JB, Donnelly JJ, Liu MA (1993) Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors. DNA Cell Biol 12:777–783

    CAS  PubMed  Google Scholar 

  4. Lu S, Arthos J, Montefiori DC, Yasutomi Y, Manson K, Mustafa F, Johnson E, Santoro JC, Wissink J, Mullins JI, Haynes JR, Letvin NL, Wyand M, Robinson HL (1996) Simian immunodeficiency virus DNA vaccine trial in macaques. J Virol 70:3978–3991

    CAS  PubMed  Google Scholar 

  5. Hartikka J, Sawdey M, Cornefert-Jensen F, Margalith M, Barnhart K, Nolasco M, Vahlsing HL, Meek J, Marquet M, Hobart P, Norman J, Manthorpe M (1996) An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 7:1205–1217

    CAS  PubMed  Google Scholar 

  6. Norman JA, Hobart P, Manthorpe M, Felgner P, Wheeler C (1997) Development of improved vectors for DNA-based immunization and other gene therapy applications. Vaccine 15:801–803

    Article  CAS  PubMed  Google Scholar 

  7. Herrera AM, Rodriguez EG, Hernandez T, Sandez B, Duarte CA (2000) A family of compact plasmid vectors for DNA immunization in humans. Biochem Biophys Res Commun 279:548–551

    Article  CAS  PubMed  Google Scholar 

  8. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974

    CAS  PubMed  Google Scholar 

  9. del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464

    PubMed  Google Scholar 

  10. Azevedo V, Levitus G, Miyoshi A, Candido AL, Goes AM, Oliveira SC (1999) Main features of DNA-based immunization vectors. Braz J Med Biol Res 32:147–153

    CAS  PubMed  Google Scholar 

  11. Ertl PF, Thomsen LL (2003) Technical issues in construction of nucleic acid vaccines. Methods 31:199–206

    Article  CAS  PubMed  Google Scholar 

  12. Prazeres DM, Monteiro GA, Ferreira GN, Diogo MM, Ribeiro SC, Cabral JM (2001) Purification of plasmids for gene therapy and DNA vaccination. Biotechnol Annu Rev 7:1–30

    CAS  PubMed  Google Scholar 

  13. Voss C, Schmidt T, Schleef M, Friehs K, Flaschel E (2003) Production of supercoiled multimeric plasmid DNA for biopharmaceutical application. J Biotechnol 105:205–213

    Article  CAS  PubMed  Google Scholar 

  14. Reyes-Sandoval A, Ertl HC (2004) CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol Ther 9:249–261

    Article  CAS  PubMed  Google Scholar 

  15. Monteiro GA, Ferreira GN, Cabra, JM, Prazeres DM (1999) Analysis and use of endogenous nuclease activities in Escherichia coli lysates during the primary isolation of plasmids for gene therapy. Biotechnol Bioeng 66:189–194

    Article  CAS  PubMed  Google Scholar 

  16. Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    CAS  PubMed  Google Scholar 

  17. Lahijani R, Hulley G, Soriano G, Horn NA, Marquet M (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum Gene Ther 7:1971–1980

    CAS  PubMed  Google Scholar 

  18. Lin-Chao S, Chen WT, Wong TT (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6:3385–3393

    CAS  PubMed  Google Scholar 

  19. Bert AG, Burrows J, Osborne CS, Cockerill PN (2000) Generation of an improved luciferase reporter gene plasmid that employs a novel mechanism for high-copy replication. Plasmid 44:173–182

    Article  CAS  PubMed  Google Scholar 

  20. United States Food and Drug Administration (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. FDA, Washington

  21. Blanca M, Mayorga C, Torres MJ, Warrington R, Romano A, Demoly P, Silviu-Dan F, Moya M, Fernandez J, Juarez C (2002) Side-chain-specific reactions to betalactams: 14 years later. Clin Exp Allergy 32:192–197

    Article  CAS  PubMed  Google Scholar 

  22. Williams SG, Cranenburgh RM, Weiss AM, Wrighton CJ, Sherratt DJ, Hanak JA (1998) Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res 26:2120–2124

    Article  CAS  PubMed  Google Scholar 

  23. Hanke T, McMichael AJ (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6:951–955

    Article  CAS  PubMed  Google Scholar 

  24. Soubrier F, Cameron B, Manse B, Somarriba S, Dubertret C, Jaslin G, Jung G, Caer CL, Dang D, Mouvault JM, Scherman D, Mayaux JF, Crouzet J (1999) pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 6:1482–1488

    Article  CAS  PubMed  Google Scholar 

  25. Kornowski R, Fuchs S, Epstein SE, Branellec D, Schwartz B (2000) Catheter-based plasmid-mediated transfer of genes into ischemic myocardium using the pCOR plasmid. Coron Artery Dis 11:615–619

    Article  CAS  PubMed  Google Scholar 

  26. Donnelly J, Berry K, Ulmer JB (2003) Technical and regulatory hurdles for DNA vaccines. Int J Parasitol 33:457–467

    Article  CAS  PubMed  Google Scholar 

  27. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  PubMed  Google Scholar 

  28. Lanford RE, Kanda P, Kennedy RC (1986) Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46:575–582

    CAS  PubMed  Google Scholar 

  29. Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    Article  CAS  PubMed  Google Scholar 

  30. Darquet AM, Rangara R, Kreiss P, Schwartz B, Naimi S, Delaere P, Crouzet J, Scherman D (1999) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther 6:209–218

    CAS  PubMed  Google Scholar 

  31. Bigger BW, Tolmachov O, Collombet JM, Fragkos M, Palaszewski I, Coutelle C (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J Biol Chem 276:23018–23027

    Article  CAS  PubMed  Google Scholar 

  32. Chen ZY, He CY, Ehrhardt A, Kay MA (2003) Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 8:495–500

    Article  CAS  PubMed  Google Scholar 

  33. Wils P, Escriou V, Warnery A, Lacroix F, Lagneaux D, Ollivier M, Crouzet J, Mayaux JF, Scherman D (1997) Efficient purification of plasmid DNA for gene transfer using triple-helix affinity chromatography. Gene Ther 4:323–330

    Article  CAS  PubMed  Google Scholar 

  34. Costioli MD, Fisch I, Garret-Flaudy F, Hilbrig F, Freitag R (2003) DNA purification by triple-helix affinity precipitation. Biotechnol Bioeng 81:535–545

    Google Scholar 

  35. Leutenegger CM, Boretti FS, Mislin CN, Flynn JN, Schroff M, Habel A, Junghans C, Koenig-Merediz SA, Sigrist B, Aubert A, Pedersen NC, Wittig B, Lutz H (2000) Immunization of cats against feline immunodeficiency virus (FIV) infection by using minimalistic immunogenic defined gene expression vector vaccines expressing FIV gp140 alone or with feline interleukin-12 (IL-12), IL-16, or a CpG motif. J Virol 74:10447–10457

    Article  CAS  PubMed  Google Scholar 

  36. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 96:91–96

    CAS  PubMed  Google Scholar 

  37. Schakowski F, Gorschluter M, Junghans C, Schroff M, Buttgereit P, Ziske C, Schottker B, Konig-Merediz SA, Sauerbruch T, Wittig B, Schmidt-Wolf IG (2001) A novel minimal-size vector (MIDGE) improves transgene expression in colon carcinoma cells and avoids transfection of undesired DNA. Mol Ther 3:793–800

    Article  CAS  PubMed  Google Scholar 

  38. Schirmbeck R, Konig-Merediz SA, Riedl P, Kwissa M, Sack F, Schroff M, Junghans C, Reimann J, Wittig B (2001) Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J Mol Med 79:343–350

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Fuertes L, Perez-Jimenez E, Vila-Coro AJ, Sack F, Moreno S, Konig SA, Junghans C, Wittig B, Timon M, Esteban M (2002) DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 21:247–257

    Article  CAS  PubMed  Google Scholar 

  40. Claas J, Wittig B (2003) Design principle for construction of expression constructs for gene therapy. International Patent Application WO 98/21322

  41. Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, Thalhamer J (2002) Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 20:3148–3154

    Article  CAS  PubMed  Google Scholar 

  42. Taki M, Kato Y, Miyagishi M, Takagi Y, Sano M, Taira K (2003) A direct and efficient synthesis method for dumbell-shaped linear DNA using PCR in vitro. Nucleic Acids Res Suppl 3:191–192

    CAS  PubMed  Google Scholar 

  43. Sykes KF, Johnston SA (1999) Linear expression elements: a rapid, in vivo, method to screen for gene functions. Nat Biotechnol 17:355–359

    Article  CAS  PubMed  Google Scholar 

  44. Heinrich J, Schultz J, Bosse M, Ziegelin G, Lanka E, Moelling K (2002) Linear closed mini DNA generated by the prokaryotic cleaving-joining enzyme TelN is functional in mammalian cells. J Mol Med 80:648–654

    Article  CAS  PubMed  Google Scholar 

  45. Deneke J, Ziegelin G, Lurz R, Lanka E (2000) The protelomerase of temperate Escherichia coli phage N15 has cleaving-joining activity. Proc Natl Acad Sci USA 97:7721–7726

    CAS  PubMed  Google Scholar 

  46. Dean DA, Dean BS, Muller S, Smith LC (1999) Sequence requirements for plasmid nuclear import. Exp Cell Res 253:713–722

    CAS  PubMed  Google Scholar 

  47. Mesika A, Grigoreva I, Zohar M, Reich Z (2001) A regulated, NFkappaB-assisted import of plasmid DNA into mammalian cell nuclei. Mol Ther 3:653–657

    Article  CAS  PubMed  Google Scholar 

  48. Langle-Rouault F, Patzel V, Benavente A, Taillez M, Silvestre N, Bompard A, Sczakiel G, Jacobs E, Rittner K (1998) Up to 100-fold increase of apparent gene expression in the presence of Epstein-Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. J Virol 72:6181–6185

    CAS  PubMed  Google Scholar 

  49. Chan CK, Hubner S, Hu W, Jans DA (1998) Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery. Gene Ther 5:1204–1212

    Article  CAS  PubMed  Google Scholar 

  50. Sato Y, Roman M, Tighe H, Lee D, Corr M, Nguyen MD, Silverman GJ, Lotz M, Carson DA, Raz E (1996) Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 273:352–354

    CAS  PubMed  Google Scholar 

  51. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  CAS  PubMed  Google Scholar 

  52. Bird AP (1987) CpG island as gene markers in the vertebrate nucleus. Trends Genet 3:342–347

    Article  CAS  Google Scholar 

  53. Stacey KJ, Young GR, Clark F, Sester DP, Roberts TL, Naik S, Sweet MJ, Hume DA (2003) The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J Immunol 170:3614–3620

    CAS  PubMed  Google Scholar 

  54. Ishii KJ, Suzuki K, Coban C, Takeshita F, Itoh Y, Matoba H, Kohn LD, Klinman DM (2001) Genomic DNA released by dying cells induces the maturation of APCs. J Immunol 167:2602–2607

    CAS  PubMed  Google Scholar 

  55. Yi AK, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM (1998) CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 160:4755–4761

    CAS  PubMed  Google Scholar 

  56. Uwiera RR, Gerdts V, Pontarollo RA, Babiuk LA, Middleton DM, Griebel PJ (2001) Plasmid DNA induces increased lymphocyte trafficking: a specific role for CpG motifs. Cell Immunol 214:155–164

    Article  CAS  PubMed  Google Scholar 

  57. Stan AC, Casares S, Brumeanu TD, Klinman DM, Bona CA (2001) CpG motifs of DNA vaccines induce the expression of chemokines and MHC class II molecules on myocytes. Eur J Immunol 31:301–310

    Article  CAS  PubMed  Google Scholar 

  58. Ma X, Forns X, Gutierrez R, Mushahwar IK, Wu T, Payette PJ, Bukh J, Purcell RH, Davis HL (2002) DNA-based vaccination against hepatitis C virus (HCV): effect of expressing different forms of HCV E2 protein and use of CpG-optimized vectors in mice. Vaccine 20:3263–3271

    Article  CAS  PubMed  Google Scholar 

  59. Yew NS, Zhao H, Przybylska M, Wu IH, Tousignant JD, Scheule RK, Cheng SH (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5:731–738

    Article  CAS  PubMed  Google Scholar 

  60. Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A 95:12631–12636

    Article  CAS  PubMed  Google Scholar 

  61. Rodrıguez EG, Vazquez DM, Herrera AM, Duarte CA (2003) Enhanced cell-mediated IFN-γ-secreting activity against the HIV-1IIIB V3 peptide of the TAB9 multiepitope after DNA vaccine backbone engineering. Biochem Biophys Res Commun 308:713–718

    Article  PubMed  Google Scholar 

  62. Ross TM, Xu Y, Bright RA, Robinson HL (2000) C3d enhancement of antibodies to hemagglutinin accelerates protection against influenza virus challenge. Nat Immunol 1:127–131

    Article  CAS  PubMed  Google Scholar 

  63. Boyd AC, Popp F, Michaelis U, Davidson H, Davidson-Smith H, Doherty A, McLachlan G, Porteous DJ, Seeber S (1999) Insertion of natural intron 6a-6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination. J Gene Med 1:312–321

    Article  CAS  PubMed  Google Scholar 

  64. van Hall T, van de Rhee NE, Schoenberger SP, Vierboom MP, Verreck FA, Melief CJ, Offringa R (1998) Cryptic open reading frames in plasmid vector backbone sequences can provide highly immunogenic cytotoxic T-lymphocyte epitopes. Cancer Res 58:3087–3093

    PubMed  Google Scholar 

  65. Scheerlinck JY (2001) Genetic adjuvants for DNA vaccines. Vaccine 19:2647–2656

    PubMed  Google Scholar 

  66. Templeton N (1999) Strategies for improving the frequency and assessment of homologous recombination. In: Methods in molecular biology, vol 133. Gene targeting protocols, Humana, Totowa

  67. MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB, Coney LR, Ginsberg RS, Weiner DB (1998) First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 178:92–100

    CAS  PubMed  Google Scholar 

  68. MacGregor RR, Boyer JD, Ciccarelli RB, Ginsberg RS, Weiner DB (2000) Safety and immune responses to a DNA-based human immunodeficiency virus (HIV) type I env/rev vaccine in HIV-infected recipients: follow-up data. J Infect Dis 181:406

    Article  CAS  PubMed  Google Scholar 

  69. Le TP, Coonan KM, Hedstrom RC, Charoenvit Y, Sedegah M, Epstein JE, Kumar S, Wang R, Doolan DL, Maguire JD, Parker SE, Hobart P, Norman J, Hoffman SL (2000) Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 18:1893–1901

    CAS  PubMed  Google Scholar 

  70. Tacket CO, Roy MJ, Widera G, Swain WF, Broome S, Edelman R (1999) Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine 17:2826–2829

    CAS  PubMed  Google Scholar 

  71. Freedman SB, Vale P, Kalka C, Kearney M, Pieczek A, Symes J, Losordo D, Isner JM (2002) Plasma vascular endothelial growth factor (VEGF) levels after intramuscular and intramyocardial gene transfer of VEGF-1 plasmid DNA. Hum Gene Ther 13:1595–1603

    Article  CAS  PubMed  Google Scholar 

  72. Safurdeen S, Karim A, Baxter C (2003) HIV vaccines and immunity. Curr Allergy Clin Immunol 16:67–69

    Google Scholar 

  73. Wittig B, Marten A, Dorbic T, Weineck S, Min H, Niemitz S, Trojaneck B, Flieger D, Kruopis S, Albers A, Loffel J, Neubauer A, Albers P, Muller S, Sauerbruch T, Bieber T, Huhn D, Schmidt-Wolf IG (2001) Therapeutic vaccination against metastatic carcinoma by expression-modulated and immunomodified autologous tumor cells: a first clinical phase I/II trial. Hum Gene Ther 12:267–278

    CAS  PubMed  Google Scholar 

  74. Pouton CW, Seymour LW (2001) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46:187–203

    Google Scholar 

  75. Baker AH (2004) Designing gene delivery vectors for cardiovascular gene therapy. Prog Biophys Mol Biol 84:279–299

    Article  CAS  PubMed  Google Scholar 

  76. Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122

    Google Scholar 

  77. Wang R, Epstein J, Baraceros FM, Gorak EJ, Charoenvit Y, Carucci DJ, Hedstrom RC, Rahardjo N, Gay T, Hobart P, Stout R, Jones TR, Richie TL, Parker SE, Doolan DL, Norman J, Hoffman SL (2001) Induction of CD4 (+) T cell-dependent CD8 (+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci U S A 98:10817–10822

    Article  CAS  PubMed  Google Scholar 

  78. Boyer JD, Cohen AD, Vogt S, Schumann K, Nath B, Ahn L, Lacy K, Bagarazzi ML, Higgins TJ, Baine Y, Ciccarelli RB, Ginsberg RS, MacGregor RR, Weiner DB (2000) Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of beta-chemokines. J Infect Dis 181:476–483

    CAS  PubMed  Google Scholar 

  79. Roy MJ, Wu MS, Barrs LJ, Fuller JT, Tussey LG, Speller S, Culp J, Burkholder JK, Swain WF, Dixon RM, Widera G, Vessey R, King A, Ogg G, Gallimore A, Haynes JR, Heydenburg-Fuller D (2001) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764–778

    Article  Google Scholar 

  80. Robinson HL (2002) New hope for an AIDS vaccine. Nat Rev Immunol 2:239–250

    Article  CAS  PubMed  Google Scholar 

  81. McMichael A, Mwau M, Hanke T (2002) Design and tests of an HIV vaccine. Br Med Bull 62:87–98

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The assertions expressed here are those of the author and are not to be construed as official or as reflecting the views of the author’s affiliation, the Center for Genetic Engineering and Biotechnology of Havana. I also thank Dr. Carlos Duarte Cano and Prof. José Luis Fernández for critical reading of the manuscript and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto G. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, E.G. Nonviral DNA vectors for immunization and therapy: design and methods for their obtention. J Mol Med 82, 500–509 (2004). https://doi.org/10.1007/s00109-004-0548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0548-x

Keywords

Navigation