Skip to main content
Log in

Design and mechanical tests of basalt fiber cloth with MAH grafted reinforced bamboo and poplar veneer composite

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

High performance fibers are widely applied to wood-based composites as reinforcement to improve mechanical performance of composites. Design and mechanical performance tests of basalt fiber cloth reinforced bamboo and poplar veneer (BFRBV) composite are presented in this paper. The fiber surface usually needs to be treated to increase the bonding strength of composites. The optimization scheme of maleic anhydride (MAH) treatment parameters was obtained by orthogonal experiment, namely temperature of 50 °C, time of 3 h and concentration of 0.08 mol/L. The mechanical performance of wood composites treated with three methods of fiber surface treatment, namely no treatment, KH550 treatment and KH550 and MAH co-treatment, was tested. The results indicated that the mechanical performance indexes of BFRBV composite were greatly improved with KH550 and MAH co-treatment. In comparison with no treatment, dry shear strength was improved by 113.3%, wet shear strength by 126.2%, peel rate was reduced from 20.15% to 0, and MOR was improved by 35.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Malaika S (1997) Reactive Modifiers for Polymers. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Bal BC, Bektaş İ, Mengeloğlu F, Karakuş K, Demir H (2015) Some technological properties of poplar plywood panels reinforced with glass fiber fabric. Constr Build Mater 101:952–957

    Article  Google Scholar 

  • Busfield WK, Brandup J, Immergut EH (1989) Polymer Handbook, 3rd edn. Wiley, New York

    Google Scholar 

  • Chen J, Wang Y, Gu C, Liu J, Liu Y, Li M, Lu Y (2013) Enhancement of the mechanical properties of basalt fiber-wood-plastic composites via maleic anhydride grafted high-density polyethylene (MAPE) addition. Materials 6:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhand V, Mittal G, Rhee KY, Park S-J, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos B 73:166–180

    Article  CAS  Google Scholar 

  • Fiore V, Scalici T, Bella DG, Valenza A (2015) A review on basalt fibre and its composites. Compos B 74:74–94

    Article  CAS  Google Scholar 

  • GB/T 17657 (2013) Test methods of evaluating the properties of wood-based panels and surface decorated wood-based panels. Standardization Administration of China, Beijing

    Google Scholar 

  • Greco A, Maffezzoli A, Casciaro G, Caretto FC (2014) Mechanical properties of basalt fibers and their adhesion to polypropylene matrices. Compos B 67:233–238

    Article  CAS  Google Scholar 

  • Iorio M, Santarelli ML, González-Gaitano G, González-Benito J (2018) Surface modification and characterization of basalt fibers as potential reinforcement of concretes. Applied Surface Science (427):1248–1256

  • Jie D, Weitao X, Shuangbao Z, Shijie S (2007) Application and fiber-reinforced polymer in engineered wood composites field. China Wood Based Panels (1): 17–20

  • Jinfen L, Fenghe M, Zhu L (2013) Effect of Maleic anhydride graft on properties of PP/ABS composite. China Plast Ind 41(6):60–63

    Google Scholar 

  • Junshi Z, Zhengdong Z, Jinlin W (2012) Research progress of glulam and glass fiber reinforced polymer composites. J West China For Sci 41(2):106–109

    Google Scholar 

  • Lifeng Z, Baohua G, Zengmin Z (2001) Synthesis of PP-g-MAH via solid grafting with a quantitative express method for analyzing MAH content. J Tsinghua Univ (Sci Technol) 41(10):5–8

    Google Scholar 

  • Liu T, Yu F, Yu X, Zhao X, Lu A, Wang J (2012) Basalt fiber reinforced and elastomer toughened polylactide composites: Mechanical properties, rheology, crystallization, and morphology. J Appl polym Sci 125:1292–1301

    Article  CAS  Google Scholar 

  • Manikandan V, Winowlin Jappes JT, Suresh Kumar SM, Amuthakkannan P (2012) Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos B 43:812–818

    Article  CAS  Google Scholar 

  • Moad G (1999) The synthesis of polyolefin graft copolymers by reactive extrusion. Prog Polym Sci (24):81–142

  • Moad G, Solomon DH (1995) The Chemistry of Free Radical Polymerization. Pergamon, Oxford

    Google Scholar 

  • Pak S, Park S, Song YS, Lee DL (2018) Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites. Compos Struct (193):73–79

  • Russell KE, Kelusky EC (1988) Grafting of maleic anhydride to n-eicosane. J Polym Sci Part A Polym Chem 26:2273–2280

    Article  CAS  Google Scholar 

  • Sipos A, McCarthy J, Russell KE (1989) Kinetic studies of grafting of maleic anhydride to hydrocarbon substrates. J Polym Sci Part A Polym Chem 27:3353–3362

    Article  CAS  Google Scholar 

  • Sliseris J, Frolovs G, Rocens K, Goremikins V (2013) Optimal design of GFRP-plywood variable stiffness plate. Procedia Eng 57:1060–1069

    Article  CAS  Google Scholar 

  • Song Q-X, Liu H-W, Zhong Z-L, Xu P (2010) Effect of silane coupling agent treatment on tensile properties of single basalt filament. J Tianjin Polytech Univ 29(1):19–22

    CAS  Google Scholar 

  • Tiwaria S, Bijweb J (2014) Surface treatment of carbon fibers - a review. Procedia Technol 14:505–512

    Article  Google Scholar 

  • Wei P, Wang BJ, Zhou D, Dai C, Wang Q, Huang S (2013) Mechanical properties of poplar laminated veneer lumber modified by carbon fiber reinforced polymer. BioResources 8(4):4883–4898

    Article  Google Scholar 

  • Zhang X, Zhu Y, Jiang S, Zhang Q (2011) Mechanical and aging resistance properties of bamboo-wood composite LVL. China For Sci Technol 25(5):55–57

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Fundamental Research Funds for the Central Universities (NO: 2017JC11), China Scholarship Council (NO: 201706515040), MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Luo, B., Shen, S. et al. Design and mechanical tests of basalt fiber cloth with MAH grafted reinforced bamboo and poplar veneer composite. Eur. J. Wood Prod. 77, 271–278 (2019). https://doi.org/10.1007/s00107-018-1378-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-018-1378-9

Navigation