Skip to main content
Log in

Modeling crack propagation in wood by extended finite element method

Modellierung des Rissfortschritts in Holz mittels erweiterter Finite-Elemente-Methode

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The main objective of this paper is to develop extended finite element method (XFEM) based models to simulate the crack propagation behavior of wood. Fracture toughness of Mode I and II and elastic properties of Northeast China larch were determined by experiments. Tests on three full-size curved Glulam beams subjected to four-point bending were conducted. XFEM based models incorporating ABAQUS were developed to simulate the experiments and investigate cracking of wood numerically. The numerical results correlate with experiments in terms of crack propagation direction and the applied forces for crack growth.

Zusammenfassung

Ziel dieser Studie war es, auf Grundlage der erweiterten Finite-Elemente-Methode (XFEM) Modelle für die Simulierung des Rissfortschritts in Holz zu entwickeln. Bruchzähigkeit im Modus I und II sowie elastische Eigenschaften von nordostchinesischer Lärche wurden experimentell bestimmt. An drei gekrümmten Brettschichtholzträgern in Gebrauchsabmessungen wurden Vier-Punkt-Biegeversuche durchgeführt. Für die Simulierung der Experimente wurden XFEM basierte Modelle unter Einbeziehung von ABAQUS entwickelt und die Rissbildung wurde numerisch untersucht. Die numerischen Ergebnisse korrelieren mit den experimentell bestimmten Ergebnissen hinsichtlich der Richtung des Rissfortschritts und der für das Risswachstum maßgebenden Kraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10
Fig. 11 Abb. 11
Fig. 12 Abb. 12
Fig. 13 Abb. 13
Fig. 14 Abb. 14
Fig. 15 Abb. 15
Fig. 16 Abb. 16

Similar content being viewed by others

References

  • ABAQUS (2010) 6.10 user’s manual, ABAQUS Inc. 2010

  • Areias PMA, Song JH, Belytschko T (2006) Analysis of fracture in thin shells by overlapping paired elements. Comput Methods Appl Mech Eng 195:5343–5360

    Article  Google Scholar 

  • ASTM E399-09 (2009) Standard test method for linear-elastic plane-strain fracture toughness K ic of metallic materials. USA

  • Barrett JD, Foschi RO (1977) Mode II stress-intensity factors for cracked wood beams. Eng Fract Mech 9:371–378

    Article  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45:601–620

    Article  Google Scholar 

  • Belytschko T, Hao C, Jingxiao X, Goangseup Z (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Meth Eng 58:1873–1905

    Article  Google Scholar 

  • Cramer S, Pugel A (1987) Compact shear specimen for wood mode II fracture investigations. Int J Fract 35:163–174

    Article  Google Scholar 

  • Grasa J, Bea JA, Doblare M (2007) A probabilistic extended finite element approach: application to the prediction of bone crack propagation. Key Eng Mater 348–349:77–80

    Article  Google Scholar 

  • Hiroshi T, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook, 2000, 3rd edn. ASME Press, New York

    Google Scholar 

  • Jernkvist LO (2001) Fracture of wood under mixed mode loading: II. Experimental investigation of Picea abies. Eng Fract Mech 68:565–576

    Article  Google Scholar 

  • Jones DL, Chisholm DB (1975) An investigation of the edge-sliding mode in fracture mechanics. Eng Fract Mech 7:261–270

    Article  Google Scholar 

  • Leicester RH, Bunker PC (1969) Fracture at butt joints in laminated pine. For Prod J 18:59–60

    Google Scholar 

  • Mindess S, Nadeau JS, Barret JD (1975) Slow crack growth in Douglas-fir. Wood Sci 7:389–396

    Google Scholar 

  • Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150

    Article  Google Scholar 

  • Pearson RG (1974) Application of fracture mechanics to the study of the tensile strength of structural lumber. Int J Biol Chem Phys Technol Wood 28:11–19

    Google Scholar 

  • Peters M, Hoppe U, Hackl K (2004) Simulation of crack–propagation using embedded discontinuities. PAMM 4:366–367

    Article  Google Scholar 

  • Prabel B, Marie S, Combescure A (2008) Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel. Eng Fract Mech 75:2984–3009

    Article  Google Scholar 

  • Qiu LP, Zhu EC, Zhou HZ, Liu LY (2012) Fracture toughness of northeast china larch. Key Engineering Mater 517:661–668

    Google Scholar 

  • Remmers JJ, Wells GN, de Borst R (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Meth Eng 58:2013–2040

    Article  Google Scholar 

  • Schoenmakers JCM (2010) Fracture and failure mechanisms in timber loaded perpendicular to the grain by mechanical connections, Thesis, Eindhoven University of Technology

  • Shi J, Chopp D, Lua J, Sukumar N, Belytschko T (2010) Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Eng Fract Mech 77:2840–2863

    Article  Google Scholar 

  • Sukumar N, Srolovitz DJ, Baker TJ, Prevost JH (2003) Brittle fracture in polycrystalline microstructures with the extended finite element method. Int J Numer Meth Eng 56:2015–2037

    Google Scholar 

  • Vasic S, Ceccotti A (2006) Rate effects and crack dynamics in mode I fracture of spruce. Oregon State University Conference Services, pp 2385–2392

  • Walsh PF (1972) Linear fracture mechanics in orthotropic materials. Eng Fract Mech 4:533–541

    Article  Google Scholar 

  • Wu EM (1967) Application of fracture mechanics to anisotropic plates. Trans ASME Ser E J Appl Mech 34:967–974

    Article  Google Scholar 

  • Yoshihara H (2008) Mode II fracture mechanics properties of wood measured by the asymmetric four-point bending test using a single-edge-notched specimen. Eng Fract Mech 75:4727–4739

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with gratitude the financial support from the National Natural Science Foundation of China (Grant No. 50878067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L.P., Zhu, E.C. & van de Kuilen, J.W.G. Modeling crack propagation in wood by extended finite element method. Eur. J. Wood Prod. 72, 273–283 (2014). https://doi.org/10.1007/s00107-013-0773-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0773-5

Keywords

Navigation