Skip to main content
Log in

Gründe für die Entstehung von Allergien bei Kindern

Reasons for the development of allergies in children

  • Übersichten
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Allergien im Kindesalter sind in den letzten Jahrzehnten deutlich angestiegen. Neben Umweltfaktoren und Ernährung spielen v. a. genetische und epigenetische Mechanismen und das Mikrobiom der Kinder eine wichtige Rolle. Relevant ist hierbei, wie sich diese Einflüsse auf die frühe Immunentwicklung von angeborenem und erworbenem Immunsystem der Kinder auswirken. Deren komplexe Regulation ist wesentlich dafür, ob eine Allergie beim Kind entsteht, die sich v. a. in einer atopischen Dermatitis, einem Asthma bronchiale oder einer allergischen Rhinokonjunktivitis äußert, oder ob das Kind eine Immuntoleranz entwickelt. Diese Einflüsse können schon pränatal beginnen und bereits zu diesem Zeitpunkt für die spätere Immunentwicklung und Krankheitsentstehung ausschlaggebend sein.

Abstract

Allergies are one of the most common chronic diseases in childhood, contributing to a tremendous medical and economical burden in health care systems of most industrialized countries. The development of allergies is dependent on a complex interaction of—among others—environmental factors, nutrition, genetic and epigenetic mechanisms as well as the microbiome. These diverse factors can influence early life immune regulation including innate and adaptive immune mechanisms in a complex fashion. In case of any Childhood allergies have increased significantly in past decades. In addition to environmental factors and nutrition, genetic and epigenetic mechanisms as well as the microbiome of children play an important role. Of relevance is the way in which these diverse factors influence early immune development of the innate and adaptive immune systems of children. Their complex regulation is decisive for whether or not a child develops an allergy that manifests in most cases as atopic dermatitis, bronchial asthma, or allergic rhino conjunctivitis, or whether a child develops an immune tolerance. These influences can begin prenatally, already setting the course for later immune system development and occurrence of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Wahn U, Seger R, Wahn V, Holländer GA (2005) Pädiatrische Allergologie und Immunologie, 4. Aufl. Urban & Fischer, München

    Google Scholar 

  2. Frey U, von Mutius E (2009) The challenge of managing wheezing in infants. N Engl J Med 360:2130–2133

    Article  CAS  Google Scholar 

  3. Jutel M, Akdis CA (2011) T‑cell subset regulation in atopy. Curr Allergy Asthma Rep 11:139–145

    Article  CAS  Google Scholar 

  4. Schaub B, Liu J, Hoppler S, Haug S, Sattler C, Lluis A et al (2008) Impairment of T‑regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 121:1491–1499

    Article  CAS  Google Scholar 

  5. Hartl D, Koller B, Mehlhorn AT, Reinhardt D, Nicolai T, Schendel DJ, Griese M, Krauss-Etschmann S (2007) Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 119:1258–1266

    Article  CAS  Google Scholar 

  6. Smyth LJ, Eustace A, Kolsum U, Blaikely J, Singh D (2010) Increased airway T regulatory cells in asthmatic subjects. Chest 138:905–912

    Article  Google Scholar 

  7. Shi HZ, Li S, Xie ZF, Qin XJ, Qin X, Zhong XN (2004) Regulatory CD4+CD25+ T lymphocytes in peripheral blood from patients with atopic asthma. Clin Immunol 113:172–178

    Article  CAS  Google Scholar 

  8. Lee JH, Yu HH, Wang LC, Yang YH, Lin YT, Chiang BL (2007) The levels of CD4+CD25+ regulatory T cells in paediatric patients with allergic rhinitis and bronchial asthma. Clin Exp Immunol 148:53–63

    Article  CAS  Google Scholar 

  9. Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA (2012) TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol 129:1438–1449

    Article  CAS  Google Scholar 

  10. Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F (2011) Th17 cells: new players in asthma pathogenesis. Allergy 66:989–998

    Article  CAS  Google Scholar 

  11. Alcorn JF, Crowe CR, Kolls JK (2010) TH17 cells in asthma and COPD. Annu Rev Physiol 72:495–516

    Article  CAS  Google Scholar 

  12. Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, Nicolaides NC, Holroyd KJ, Tsicopoulos A, Lafitte JJ, Wallaert B, Hamid QA (2000) IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol 105:108–115

    Article  CAS  Google Scholar 

  13. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, Durham SR, Schmidt-Weber CB, Cavani A (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119:3573–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schnyder B, Lima C, Schnyder-Candrian S (2010) Interleukin-22 is a negative regulator of the allergic response. Cytokine 50:220–227

    Article  CAS  Google Scholar 

  15. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260

    Article  CAS  Google Scholar 

  16. Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, von Mutius E, Allergy and Endotoxin Study Team (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877

    Article  Google Scholar 

  17. von Mutius E, Radon K (2008) Living on a farm: impact on asthma induction and clinical course. Immunol Allergy Clin North Am 28:631–647

    Article  Google Scholar 

  18. Ege MJ, Bieli C, Frei R, van Strien RT, Riedler J, Ublagger E, Schram-Bijkerk D, Brunekreef B, van Hage M, Scheynius A, Pershagen G, Benz MR, Lauener R, von Mutius E, Braun-Fahrländer C, Parsifal Study team (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117:817–823

    Article  Google Scholar 

  19. Schaub B, Liu J, Höppler S et al (2009) Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 123:774–782

    Article  CAS  Google Scholar 

  20. Human Microbiome Project Consortium, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, Giglio MG, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  21. Hansel TT, Johnston SL, Openshaw PJ (2013) Microbes and mucosal immune responses in asthma. Lancet 381:861–873

    Article  CAS  Google Scholar 

  22. Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke K, Brasholt M, Heltberg A, Vissing NH, Thorsen SV, Stage M, Pipper CB (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357:1487–1495

    Article  CAS  Google Scholar 

  23. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut micro-biota metabolic interactions. Science 336:1262–1267

    Article  CAS  Google Scholar 

  24. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–665

    Article  Google Scholar 

  25. Stick SM, Burton PR, Gurrin L, Sly PD, LeSouëf PN (1996) Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet 348:1060–1064

    Article  CAS  Google Scholar 

  26. Lemjabbar H, Li D, Gallup M, Sidhu S, Drori E, Basbaum C (2003) Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor alpha-converting enzyme and amphiregulin. J Biol Chem 278:26202–26207

    Article  CAS  Google Scholar 

  27. Willwerth BM, Schaub B, Tantisira KG, Gold DR, Palmer LJ, Litonjua AA, Perkins DL, Schroeter C, Gibbons FK, Gillman MW, Weiss ST, Finn PW (2006) Prenatal, perinatal, and heritable influences on cord blood immune responses. Ann Allergy Asthma Immunol 96:445–453

    Article  Google Scholar 

  28. Schäfer T, Bauer CP, Beyer K, Bufe A, Friedrichs F, Gieler U, Gronke G, Hamelmann E, Hellermann M, Kleinheinz A, Klimek L, Koletzko S, Kopp M, Lau S, Müsken H, Reese I, Schmidt S, Schnadt S, Sitter H, Strömer K, Vagts J, Vogelberg C, Wahn U, Werfel T, Worm M, Muche-Borowski C (2014) S3-Guideline on allergy prevention: 2014 update. Allergo J Int. 23(6):186–99

    Article  Google Scholar 

  29. Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, Prescott SL (2003) Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J Allergy Clin Immunol 112:1178–1184

    Article  CAS  Google Scholar 

  30. Krauss-Etschmann S, Hartl D, Rzehak P et al (2008) Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women. J Allergy Clin Immunol 121:464–470

    Article  CAS  Google Scholar 

  31. Almqvist C, Garden F, Xuan W et al (2007) Omega-3 and omega-6 fatty acid exposure from early life does not effect atopy and asthma at age 5 years. J Allergy Clin Immunol 119:1438–1444

    Article  CAS  Google Scholar 

  32. Moffatt MF, Kabesch M, Liang L, Dixon AL (2011) Stration. J Allergy Clin Immunol 127:1587–1594

    Article  Google Scholar 

  33. Schedel M, Pinto LA, Schaub B, Rosenstiel P, Cherkasov D, Cameron L, Klopp N, Illig T, Vogelberg C, Weiland SK, von Mutius E, Lohoff M, Kabesch M (2008) IRF-1 gene variations influence IgE regulation and atopy. Am J Respir Crit Care Med 177:613–621

    Article  CAS  Google Scholar 

  34. Suttner K, Ruoss I, Rosenstiel P et al (2009) HLX1 gene variants influence the development of childhood asthma. J Allergy Clin Immunol 123:82–88

    Article  CAS  Google Scholar 

  35. Casaca VI, Illi S, Suttner K, Schleich I, Ballenberger N, Klucker E, Turan E, von Mutius E, Kabesch M, Schaub B (2012) TBX21 and HLX1 polymorphisms influence cytokine secretion at birth. PLoS ONE 7:e31069

    Article  CAS  Google Scholar 

  36. Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, Nowak D, Martinez FD, ALEX Study Team (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113:482–488

    Article  CAS  Google Scholar 

  37. Lazarus R, Raby BA, Lange C, Silverman EK, Kwiatkowski DJ, Vercelli D, Klimecki WJ, Martinez FD, Weiss ST (2004) TOLL-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 170:594–600

    Article  Google Scholar 

  38. Kormann MS, Depner M, Hartl D, Klopp N, Illig T, Adamski J et al (2008) Toll-like receptor heterodimer variants protect from childhood asthma. J Allergy Clin Immunol 122:86–92

    Article  CAS  Google Scholar 

  39. Raedler D, Illi S, Pinto LA, von Mutius E, Illig T, Kabesch M, Schaub B (2013) IL10 polymorphisms influence neonatal immune responses, atopic dermatitis, and wheeze at age 3 years. J Allergy Clin Immunol 131:789–796

    Article  CAS  Google Scholar 

  40. Lee YA, Wahn U, Kehrt R, Tarani L, Businco L, Gustafsson D, Andersson F, Oranje AP, Wolkertstorfer A, v Berg A, Hoffmann U, Küster W, Wienker T, Rüschendorf F, Reis A (2000) A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26:470–473

    Article  CAS  Google Scholar 

  41. Morar N, Willis-Owen SA, Moffatt MF, Cookson WO (2006) The genetics of atopic dermatitis. J Allergy Clin Immunol 118:24–34

    Article  CAS  Google Scholar 

  42. Tomita K, Sakashita M, Hirota T, Tanaka S, Masuyama K, Yamada T, Fujieda S, Miyatake A, Hizawa N, Kubo M, Nakamura Y, Tamari M (2013) Variants in the 17q21 asthma susceptibility locus are associated with allergic rhinitis in the Japanese population. Allergy 68:92–100

    Article  CAS  Google Scholar 

  43. Ramasamy A, Curjuric I, Coin LJ, Kumar A, McArdle WL, Imboden M, Leynaert B, Kogevinas M, Schmid-Grendelmeier P, Pekkanen J, Wjst M, Bircher AJ, Sovio U, Rochat T, Hartikainen AL, Balding DJ, Jarvelin MR, Probst-Hensch N, Strachan DP, Jarvis DL (2011) A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol 128:996–1005

    Article  CAS  Google Scholar 

  44. Yang IV, Schwartz DA (2012) Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 130:1243–1255

    Article  CAS  Google Scholar 

  45. Brand S, Teich R, Dicke T et al (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128:618–625

    Article  CAS  Google Scholar 

  46. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273

    Article  CAS  Google Scholar 

  47. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. Plos Biol 5:e38

    Article  Google Scholar 

  48. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38:1654–1663

    Article  CAS  Google Scholar 

  49. Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Larivière M, Moussette S, Grundberg E, Kwan T, Ouimet M, Ge B, Hoberman R, Swiatek M, Dias J, Lam KC, Koka V, Harmsen E, Soto-Quiros M, Avila L, Celedón JC, Weiss ST et al (2009) Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet 85:377–393

    Article  CAS  Google Scholar 

  50. Depner M, Fuchs O, Genuneit J, Karvonen AM, Hyvärinen A, Kaulek V, Roduit C, Weber J, Schaub B et al (2014) Clinical and epidemiologic phenotypes of childhood asthma. Am J Respir Crit Care Med 189:129–138

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Klimek.

Ethics declarations

Interessenkonflikt

L. Klimek, B. Wollenberg, O. Guntinas-Lichius, O. Pfaar und M. Koennecke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimek, L., Wollenberg, B., Guntinas-Lichius, O. et al. Gründe für die Entstehung von Allergien bei Kindern . HNO 67, 90–97 (2019). https://doi.org/10.1007/s00106-018-0595-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-018-0595-1

Schlüsselwörter

Keywords

Navigation