Skip to main content

Advertisement

Log in

Pathogenese und Molekularpathologie des Vestibularisschwannoms

Pathogenesis and molecular pathology of vestibular schwannoma

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Schwannome sind Tumoren der Nervenscheide, die sich von den Schwann-Zellen herleiten. Am häufigsten treten sie am VIII. Hirnnerv (Vestibularisschwannome) auf. Histologisch finden sich mäßig zelldichte Spindelzelltumoren mit Ausbildung von Antoni-A- und -B-Regionen sowie Verocay-Körperchen. Eine maligne Entartung ist sehr selten. Ursächlich ist die Inaktivierung von Merlin (Schwannomin), dem Genprodukt von NF2, durch Mutationen, Allelverlust oder Methylierung. Im Rahmen einer Neurofibromatose Typ 2 finden sich bei der Hälfte der Betroffenen eine Keimbahnmutation und in den Tumoren eine weitere Mutation (zweiter „hit“) des NF2-Gens. Häufig besteht ein Verlust von Chromosom 22 oder 22q. Merlin verbindet die Zellmembran mit dem Zytoskelett und reguliert intrazelluläre Signalwege, sodass der Verlust zu einer Dysorganisation des Zytoskeletts führt. Durch die Inaktivierung von Merlin werden Rac1 und Ras nicht mehr inhibiert und die Signalwege PAK1, mTORC1, EGFR-Ras-ERK, PI3K-Akt, WNT und Hippo sowie Rezeptortyrosinkinasen aktiviert. Im Zellkern inhibiert Merlin die E3-Ubiquitin-Ligase CRL4DCAF1. Neben der biallelischen Inaktivierung von NF2 in Schwannomen kommt es in Schwannomatose-assoziierten Tumoren zur Inaktivierung weiterer Gene, wie LZTR1, SMARCB1 und COQ6, wobei Erstere die Funktion des SWI/SNF-Chromatin-Remodeling-Komplexes für die Genese von Schwannomen belegen. Eigene Untersuchungen weisen auf eine Deregulierung von BAF170 hin, einer weiteren Komponente des SWI/SNF-Komplexes. Aus diesen Wirkmechanismen ergeben sich gezielte molekulare Therapieansätze, z. B. gegen mTOR (Rapamycin/Sirolmus/Everolimus), EGFR (Lapatinib) oder VEGF (Bevacizumab), obwohl klinische Studien noch keinen Anlass zur breiteren klinischen Anwendung gegeben haben.

Abstract

Schwannomas are benign Schwann cell-derived tumors of the peripheral nerve sheath often involving the vestibular cranial nerve (vestibular schwannoma). Histologically, they consist of bipolar spindle cells and show a moderate cellularity. Typically, Antoni A regions with a storiform pattern and loose Antoni B regions are intermingled. Verocay bodies are the pathognomonic palisading structures. Malignant transformation is rare. Merlin (schwannomin), the protein product of NF2, is inactivated by mutations, loss of heterozygosity or methylation. Within neurofibromatosis type 2, a germline mutation is present in about half of cases, whereas tumors demonstrate an additional second hit of the NF2 gene. A loss of chromosome 22 or 22q is common. Merlin links the cell membrane with the cytoskeleton and regulates intracellular signaling pathways leading to dysorganization when merlin is inactivated. Loss of merlin activates Rac1 and Ras, and the PAK1, mTORC1, EGFR-Ras-ERK, PI3K-Akt, WNT and Hippo pathways as well as receptor tyrosine kinases. Furthermore, merlin locates to the nucleus and inhibits E3 ubiquitin ligase CRL4DCAF1. Besides biallelic inactivation of NF2 in schwannomas, other genes are involved in the pathogenesis of schwannomatosis-associated schwannomas such as LZTR1, SMARCB1, COQ6 indicating an important role of SWI/SNF chromatin-remodeling complex for schwannoma development. Our own investigations point to deregulation of BAF170, another essential SWI/SNF complex component. Knowledge of mechanisms allows targeted molecular therapy, especially in vestibular schwannomas, using antagonists against mTOR (rapamycin/sirolmus/everolimus), EGFR (lapatinib) or VEGF (bevacizumab), although clinical studies have been in part disappointing so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Asthagiri AR, Parry DM, Butman JA et al (2009) Neurofibromatosis type 2. Lancet 373:1974–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buckley PG, Mantripragada KK, Diaz De Stahl T et al (2005) Identification of genetic aberrations on chromosome 22 outside the NF2 locus in schwannomatosis and neurofibromatosis type 2. Hum Mutat 26:540–549

    Article  CAS  PubMed  Google Scholar 

  4. Carroll SI (2012) Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms. Acta Neuropathol 123:321–348

    Article  CAS  PubMed  Google Scholar 

  5. Dal Molin M, Hong SM, Hebbar S et al (2012) Loss of expression of the SWI/SNF chromatin remodeling subunit BRG1/SMARCA4 is frequently observed in intraductal papillary mucinous neoplasms of the pancreas. Hum Pathol 43:585–591

    Article  Google Scholar 

  6. Evans DG, Wallace A (2009) An update on age related mosaic and offspring risk in neurofibromatosis 2 (NF2). J Med Genet 46:792

    Article  CAS  PubMed  Google Scholar 

  7. Farrants AK (2008) Chromatin remodelling and actin organisation. FEBS Lett 582:2041–2050

    Article  PubMed  Google Scholar 

  8. Giovannini M, Bonne NX, Vitte J et al (2014) mTORC1 inhibition delays growth of neurofibromatosis type 2 schwannoma. Neuro Oncol 16:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giovannini M, Robanus-Maandag E, Van Der Valk M et al (2000) Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14:1617–1630

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Halliday GM, Bock VL, Moloney FJ et al (2009) SWI/SNF: a chromatin-remodelling complex with a role in carcinogenesis. Int J Biochem Cell Biol 41:725–728

    Article  CAS  PubMed  Google Scholar 

  11. Harder A, Wesemann M, Hagel C et al (2012) Hybrid neurofibroma/schwannoma is overrepresented among schwannomatosis and neurofibromatosis patients. Am J Surg Pathol 36:702–709

    Article  PubMed  Google Scholar 

  12. Hutter S, Piro Rm RM, Reuss DE et al (2014) Whole exome sequencing reveals that the majority of schwannomatosis cases remain unexplained after excluding SMARCB1 and LZTR1 germline variants. Acta Neuropathol 128:449–452

    Article  CAS  PubMed  Google Scholar 

  13. Karajannis MA, Legault G, Hagiwara M et al (2012) Phase II trial of lapatinib in adult and pediatric patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol 14:1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karajannis MA, Legault G, Hagiwara M et al (2014) Phase II study of everolimus in children and adults with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol 16:292–297

    Article  CAS  PubMed  Google Scholar 

  15. Kino T, Takeshima H, Nakao M et al (2001) Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma. Genes Cells 6:441–454

    Article  CAS  PubMed  Google Scholar 

  16. Koutsimpelas D, Ruerup G, Mann WJ et al (2012) Lack of neurofibromatosis type 2 gene promoter methylation in sporadic vestibular schwannomas. ORL J Otorhinolaryngol Relat Spec 74:33–37

    Article  CAS  PubMed  Google Scholar 

  17. Lee TX, Packer MD, Huang J et al (2009) Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer 45:1709–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li W, You L, Cooper J et al (2010) Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140:477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lind GE, Skotheim RI, Fraga MF et al (2006) Novel epigenetically deregulated genes in testicular cancer include homeobox genes and SCGB3A1 (HIN-1). J Pathol 210:441–449

    Article  CAS  PubMed  Google Scholar 

  20. Maccollin M, Chiocca EA, Evans DG et al (2005) Diagnostic criteria for schwannomatosis. Neurology 64:1838–1845

    Article  CAS  PubMed  Google Scholar 

  21. Maccollin M, Woodfin W, Kronn D et al (1996) Schwannomatosis: a clinical and pathologic study. Neurology 46:1072–1079

    Article  CAS  PubMed  Google Scholar 

  22. Manchanda PK, Jones GN, Lee AA et al (2013) Rac1 is required for Prkar1a-mediated Nf2 suppression in Schwann cell tumors. Oncogene 32:3491–3499

    Article  CAS  PubMed  Google Scholar 

  23. McClatchey AI, Fehon RG (2009) Merlin and the ERM proteins – regulators of receptor distribution and signaling at the cell cortex. Trends Cell Biol 19:198–206

    Article  PubMed  PubMed Central  Google Scholar 

  24. McClatchey AI, Giovannini M (2005) Membrane organization and tumorigenesis – the NF2 tumor suppressor, Merlin. Genes Dev 19:2265–2277

    Article  CAS  PubMed  Google Scholar 

  25. Network Cgar (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49

    Article  Google Scholar 

  26. Paganini I, Chang VY, Capone GI et al (2014) Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur J Hum Genet. DOI:10.1007/s00106-016-0201-3

    PubMed  PubMed Central  Google Scholar 

  27. Patil S, Perry A, Maccollin M et al (2008) Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol 18:517–519

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Peng G, Yim EK, Dai H et al (2009) BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 11:865–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piotrowski A, Xie J, Liu YF et al (2014) Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 46:182–187

    Article  CAS  PubMed  Google Scholar 

  30. Plotkin SR, Halpin C, McKenna MJ et al (2010) Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol 31:1135–1143

    Article  PubMed  PubMed Central  Google Scholar 

  31. Plotkin SR, Stemmer-Rachamimov AO, Barker FG 2nd et al (2009) Hearing improvement after bevacizumab in patients with neurofibromatosis type 2. N Engl J Med 361:358–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rando OJ, Zhao K, Janmey P et al (2002) Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci U S A 99:2824–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rao Q, Xia QY, Shen Q et al (2014) Coexistent loss of INI1 and BRG1 expression in a rhabdoid renal cell carcinoma (RCC): implications for a possible role of SWI/SNF complex in the pathogenesis of RCC. Int J Clin Exp Pathol 7:1782–1787

    PubMed  PubMed Central  Google Scholar 

  34. Roberts CW, Orkin SH (2004) The SWI/SNF complex – chromatin and cancer. Nat Rev Cancer 4:133–142

    Article  CAS  PubMed  Google Scholar 

  35. Ron E, Modan B, Boice JD et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319:1033–1039

    Article  CAS  PubMed  Google Scholar 

  36. Salvati M, Polli FM, Caroli E et al (2003) Radiation-induced schwannomas of the nervous system. Report of five cases and review of the literature. J Neurosurg Sci 47:113–116 (discussion 116)

    CAS  PubMed  Google Scholar 

  37. Santen GW, Kriek M, Van Attikum H (2012) SWI/SNF complex in disorder: SWItching from malignancies to intellectual disability. Epigenetics 7:1219–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schneider AB, Ron E, Lubin J et al (2008) Acoustic neuromas following childhood radiation treatment for benign conditions of the head and neck. Neuro Oncol 10:73–78

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schneppenheim R, Fruhwald MC, Gesk S et al (2010) Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 86:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sestini R, Bacci C, Provenzano A et al (2008) Evidence of a four – hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas. Hum Mutat 29:227–231

    Article  CAS  PubMed  Google Scholar 

  41. Smith MJ, Isidor B, Beetz C et al (2014) Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology 84(2):141–147

    Article  PubMed  Google Scholar 

  42. Tanaka K, Eskin A, Chareyre F et al (2013) Therapeutic potential of HSP90 inhibition for neurofibromatosis type 2. Clin Cancer Res 19:3856–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wiegand KC, Shah SP, Al-Agha OM et al (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Woodruff JM, Godwin TA, Erlandson RA et al (1981) Cellular schwannoma: a variety of schwannoma sometimes mistaken for a malignant tumor. Am J Surg Pathol 5:733–744

    Article  CAS  PubMed  Google Scholar 

  45. Qy X, Rao Q, Cheng L et al (2014) Loss of BRM expression is a frequently observed event in poorly differentiated clear cell renal cell carcinoma. Histopathology 64:847–862

    Article  Google Scholar 

  46. Zhang K, Lin JW, Wang J et al (2014) A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis. Genet Med 16:787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang N, Bai H, David KK et al (2010) The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 19:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Für die Erhebungen zur Expression von Untereinheiten des SWI/SNF-Komplexes in Nervenscheidentumoren möchten wir M. Wesemann hiermit ausdrücklich danken. Dieses Teilprojekt wurde von der Innovativen Medizinischen Forschung (IMF HA121006) des Universitätsklinikums Münster gefördert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Harder.

Ethics declarations

Interessenkonflikt

M. Brodhun, V. Stahn und A. Harder geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodhun, M., Stahn, V. & Harder, A. Pathogenese und Molekularpathologie des Vestibularisschwannoms. HNO 65, 362–372 (2017). https://doi.org/10.1007/s00106-016-0201-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0201-3

Schlüsselwörter

Keywords

Navigation