Skip to main content
Log in

Pathophysiologie des Hörverlusts

Klassifikation und Therapieoptionen

Pathophysiology of hearing loss

Classification and treatment options

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Aus dem Blickwinkel der Therapien von Hörstörungen können die Ursachen und die pathophysiologischen Folgen von Hörschäden nach der Ausprägung der primären Ursachen klassifiziert werden. Hörstörungen können unterschiedliche Folgen für den Zellerhalt im Corti-Organ und im Spiralganglion haben. Diese haben aus Sicht der Autoren nicht nur wesentliche Konsequenzen für den Erfolg von prothetischer Therapie, sondern beinhalten auch sehr unterschiedliches Potenzial für neue kausale molekulare Therapie. Ursachen, die auf ein einzelnes oder wenige Moleküle ohne nachgeschaltete zelluläre Schäden beschränkt sind, haben das beste Potenzial für eine kausale Therapie. Erste Erfolge von molekularer Therapie im Tierversuch sind seit wenigen Jahren bekannt. Leider sind diese Ursachen sehr selten, und die Therapie wird auch in der Zukunft unterschiedliche Methoden nutzen müssen. Zusätzlich zu peripheren Veränderungen haben Hörschäden auch Konsequenzen für die Funktion des Gehirns, die individuell unterschiedlich sein können. Wir plädieren deshalb für eine Individualisierung der Therapie, die nicht nur das Symptom des Hörschadens behandelt, sondern den Fokus auf die individuellen, zentralen Folgen und Adaptationen lenkt. Nur mit einer individualisierten Therapie kann der Erfolg der Therapie von Hörstörungen wesentlich gesteigert werden.

Abstract

From the therapeutic perspective, the etiology and pathophysiology of hearing loss can be classified based on the extent of the primary cause. Hearing loss can have very different consequences for cell preservation in the organ of Corti and the spiral ganglion. These not only have implications for prosthetic therapy outcome, but may also influence the potential for future causal molecular therapies. Etiologies leading to deficits that are limited to one or a few molecules without having an effect on cell survival have the greatest potential for future causal therapy using molecular and cellular approaches. Preliminary success for molecular therapy was recently reported in animal experiments. Unfortunately, the incidence of these types of hearing loss is very low and in the future the therapy of hearing loss will therefore also require several different approaches. In addition to peripheral pathophysiology, hearing loss has consequences on the functioning of the brain, which can vary greatly due to individual adaptation to the situation without hearing. The authors therefore argue for individualization of the diagnostics and therapy that focus not only the symptom of hearing loss, but also the individual pathophysiology and consequences. Only with individualized therapy can the success of treating hearing disorders be significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kral A (2013) To hear or not to hear: neuroscience of deafness. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 1–16

    Google Scholar 

  2. Kral A, Baumhoff P, Shepherd RK (2013) Integrative neuronal functions in deafness. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 151–188

    Google Scholar 

  3. Kral A (2013) Auditory critical periods: a review from system’s perspective. Neuroscience 247:117–133

    Article  CAS  PubMed  Google Scholar 

  4. Kral A, O’Donoghue GM (2010) Profound deafness in childhood. N Engl J Med 363:1438–1450

    Article  CAS  PubMed  Google Scholar 

  5. Géléoc GS, Holt JR (2014) Sound strategies for hearing restoration. Science 344:1241062

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dror AA, Avraham KB (2010) Hearing impairment: a panoply of genes and functions. Neuron 68:293–308

    Article  CAS  PubMed  Google Scholar 

  7. Brownstein Z, Shivatzki S, Avraham KB (2013) Molecular etiology of deafness and cochlear consequences. In: Kral A, Popper AN, Fay RR (Hrsg) Springer handbook of auditory research: deafness. Springer, New York, Heidelberg, S 17–39

    Google Scholar 

  8. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, Schneider BL, Aebischer P, Holt JR (2015) Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med 7:295ra108

    Article  PubMed  Google Scholar 

  9. Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P et al (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    Article  CAS  PubMed  Google Scholar 

  10. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lustig LR, Akil O (2012) Cochlear gene therapy. Curr Opin Neurol 25:57–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung S, Maritzen T, Wichmann C, Jing Z, Neef A, Revelo NH, Al-Moyed H, Meese S, Wojcik SM et al (2015) Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing. EMBO J 34(21):2686–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D, Thelen N, Perfettini I, Zelles T, Aller M et al (2015) Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163:894–906

    Article  CAS  PubMed  Google Scholar 

  14. Verpy E, Weil D, Leibovici M, Goodyear RJ, Hamard G, Houdon C, Lefèvre GM, Hardelin JP, Richardson GP et al (2008) Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF, Brough DE, Raphael Y (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276

    Article  CAS  PubMed  Google Scholar 

  16. Gubbels SP, Woessner DW, Mitchell JC, Ricci AJ, Brigande JV (2008) Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer. Nature 455:537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reng D, Müller M, Smolders JW (2001) Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear. Audiol Neurootol 6:66–78

    Article  CAS  PubMed  Google Scholar 

  18. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12(5):606–6015

    Article  Google Scholar 

  20. Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562

    Article  CAS  PubMed  Google Scholar 

  21. Chen I, Limb CJ, Ryugo DK (2010) The effect of cochlear-implant-mediated electrical stimulation on spiral ganglion cells in congenitally deaf white cats. J Assoc Res Otolaryngol 11:587–603

    Article  PubMed  PubMed Central  Google Scholar 

  22. Willaredt MA, Ebbers L, Nothwang HG (2014) Central auditory function of deafness genes. Hear Res 312:9–20

    Article  PubMed  Google Scholar 

  23. Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ (2012) Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS ONE 7:e46355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berlin CI, Hood LJ, Morlet T, Wilensky D, Li L, Mattingly KR, Taylor-Jeanfreau J, Keats BJ, John PS et al (2010) Multi-site diagnosis and management of 260 patients with auditory neuropathy/dys-synchrony (auditory neuropathy spectrum disorder). Int J Audiol 49:30–43

    Article  PubMed  Google Scholar 

  25. Santarelli R, Del Castillo I, Rodríguez-Ballesteros M, Scimemi P, Cama E, Arslan E, Starr A (2009) Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. J Assoc Res Otolaryngol 10:545–556

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kral A, Kronenberger WG, Pisoni DB, O’Donoghue GM (2016) Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet Neurol (Epub ahead of print)

  27. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015

    Article  CAS  PubMed  Google Scholar 

  28. Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29:367–373

    Article  CAS  PubMed  Google Scholar 

  29. Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122

    Article  CAS  PubMed  Google Scholar 

  30. Kral A, Hubka P, Heid S, Tillein J (2013) Single-sided deafness leads to unilateral aural preference within an early sensitive period. Brain 136:180–193

    Article  PubMed  Google Scholar 

  31. Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat – population statistics and degenerative changes. Hear Res 115:101–112

    Article  CAS  PubMed  Google Scholar 

  32. Sugawara M, Corfas G, Liberman MC (2005) Influence of supporting cells on neuronal degeneration after hair cell loss. J Assoc Res Otolaryngol 6:136–147

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaiser O, Paasche G, Stöver T, Ernst S, Lenarz T, Kral A, Warnecke A (2013) TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacology 75C:416–425

    Article  Google Scholar 

  35. Moore BC, Glasberg B, Schlueter A (2010) Detection of dead regions in the cochlea: relevance for combined electric and acoustic stimulation. Adv Otorhinolaryngol 67:43–50

    PubMed  Google Scholar 

  36. Garadat SN, Litovsky RY, Yu G, Zeng FG (2010) Effects of simulated spectral holes on speech intelligibility and spatial release from masking under binaural and monaural listening. J Acoust Soc Am 127:977–989

    Article  PubMed  PubMed Central  Google Scholar 

  37. Würfel W, Lanfermann H, Lenarz T, Majdani O (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316C:65–72

    Article  Google Scholar 

  38. Kral A, Tillein J (2006) Brain plasticity under cochlear implant stimulation. Adv Otorhinolaryngol 64:89–108

    PubMed  Google Scholar 

  39. Kral A, Tillein J, Heid S, Hartmann R, Klinke R (2005) Postnatal cortical development in congenital auditory deprivation. Cereb Cortex 15:552–562

    Article  CAS  PubMed  Google Scholar 

  40. Tillein J, Heid S, Lang E, Hartmann R, Kral A (2012) Development of brainstem-evoked responses in congenital auditory deprivation. Neural Plast 2012:182767

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mostafapour SP, Cochran SL, Del Puerto NM, Rubel EW (2000) Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. J Comp Neurol 426:561–571

    Article  CAS  PubMed  Google Scholar 

  42. Tong L, Strong MK, Kaur T, Juiz JM, Oesterle EC, Hume C, Warchol ME, Palmiter RD, Rubel EW (2015) Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci 35:7878–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leake PA, Hradek GT, Bonham BH, Snyder RL (2008) Topography of auditory nerve projections to the cochlear nucleus in cats after neonatal deafness and electrical stimulation by a cochlear implant. J Assoc Res Otolaryngol 9:349–372

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barone P, Lacassagne L, Kral A (2013) Reorganization of the connectivity of cortical field DZ in congenitally deaf cat. PLoS ONE 8:e60093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506

    Article  CAS  PubMed  Google Scholar 

  46. Clause A, Kim G, Sonntag M, Weisz CJ, Vetter DE, Rűbsamen R, Kandler K (2014) The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 82:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kral A, Hubka P, Tillein J (2015) Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiol Neurootol 20:7–12

    Article  PubMed  Google Scholar 

  48. Eggermont JJ (1996) Differential maturation rates for response parameters in cat primary auditory cortex. Aud Neurosci 2:309–327

    Google Scholar 

  49. Bonham BH, Cheung SW, Godey B, Schreiner CE (2004) Spatial organization of frequency response areas and rate/level functions in the developing AI. J Neurophysiol 91:841–854

    Article  PubMed  Google Scholar 

  50. Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285:1729–1733

    Article  CAS  PubMed  Google Scholar 

  51. Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2002) Hearing after congenital deafness: central auditory plasticity and sensory deprivation. Cereb Cortex 12:797–807

    Article  CAS  PubMed  Google Scholar 

  52. Kral A, Tillein J, Heid S, Klinke R, Hartmann R (2006) Cochlear implants: cortical plasticity in congenital deprivation. Prog Brain Res 157:283–313

    Article  PubMed  Google Scholar 

  53. Kral A, Heid S, Hubka P, Tillein J (2013) Unilateral hearing during development: hemispheric specificity in plastic reorganizations. Front Syst Neurosci 7:93

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kral A, Eggermont JJ (2007) What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56:259–269

    Article  PubMed  Google Scholar 

  55. Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203:134–143

    Article  PubMed  Google Scholar 

  56. Sharma A, Martin K, Roland P, Bauer P, Sweeney MH, Gilley P, Dorman M (2005) P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol 16:564–573

    Article  PubMed  Google Scholar 

  57. Sharma A, Gilley PM, Dorman MF, Baldwin R (2007) Deprivation-induced cortical reorganization in children with cochlear implants. Int J Audiol 46:494–499

    Article  PubMed  Google Scholar 

  58. Gordon KA, Tanaka S, Wong DD, Stockley T, Ramsden JD, Brown T, Jewell S, Papsin BC (2010) Multiple effects of childhood deafness on cortical activity in children receiving bilateral cochlear implants simultaneously. Clin Neurophysiol 122:823–833

    Article  PubMed  Google Scholar 

  59. Luria AR (1973) The working brain: an introduction to neuropsychology. Basic Books, New York

    Google Scholar 

  60. Myklebust HE (1960) The psychology of deafness. Grune and Stratton, New York

    Google Scholar 

  61. Bavelier D, Dye MW, Hauser PC (2006) Do deaf individuals see better? Trends Cogn Sci (Regul Ed) 10:512–518

    Article  Google Scholar 

  62. Pavani F, Bottari D (2012) Visual abilities in individuals with profound deafness a critical review. In: Murray MM, Wallace MT (Hrsg) The neural bases of multisensory processes. CRC Press, Boca Raton

    Google Scholar 

  63. Kral A, Schroder JH, Klinke R, Engel AK (2003) Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp Brain Res 153:605–613

    Article  CAS  PubMed  Google Scholar 

  64. Lomber SG, Meredith MA, Kral A (2010) Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat Neurosci 13:1421–1427

    Article  CAS  PubMed  Google Scholar 

  65. Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P (2010) Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cereb Cortex 20:1217–1222

    Article  CAS  PubMed  Google Scholar 

  66. Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44–52

    Article  CAS  PubMed  Google Scholar 

  67. Campbell J, Sharma A (2014) Cross-modal re-organization in adults with early stage hearing loss. PLoS ONE 9:e90594

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lazard DS, Lee HJ, Gaebler M, Kell CA, Truy E, Giraud AL (2010) Phonological processing in post-lingual deafness and cochlear implant outcome. Neuroimage 49:3443–3451

    Article  CAS  PubMed  Google Scholar 

  69. Koo D, Crain K, LaSasso C, Eden GF (2008) Phonological awareness and short-term memory in hearing and deaf individuals of different communication backgrounds. Ann N Y Acad Sci 1145:83–99

    Article  PubMed  Google Scholar 

  70. Quittner AL, Smith LB, Osberger MJ, Mitchell TV, Katz DB (1994) The impact of audition on the development of visual attention. Psychol Sci 5:347–353

    Article  Google Scholar 

  71. Dye MW, Hauser PC (2014) Sustained attention, selective attention and cognitive control in deaf and hearing children. Hear Res 309:94–102

    Article  PubMed  Google Scholar 

  72. Kronenberger WG, Beer J, Castellanos I, Pisoni DB, Miyamoto RT (2014) Neurocognitive risk in children with cochlear implants. JAMA Otolaryngol Head Neck Surg 140:608–615

    Article  PubMed  Google Scholar 

  73. Castellanos I, Kronenberger WG, Beer J, Colson BG, Henning SC, Ditmars A, Pisoni DB (2015) Concept formation skills in long-term cochlear implant users. J Deaf Stud Deaf Educ 20:27–40

    Article  PubMed  Google Scholar 

  74. Lammers MJ, Jansen TT, Grolman W, Lenarz T, Versnel H, Zanten GA van, Topsakal V, Lesinski-Schiedat A (2015) The influence of newborn hearing screening on the age at cochlear implantation in children. Laryngoscope 125:985–990

    Article  PubMed  Google Scholar 

Download references

Danksagung

Unterstützt von der Deutschen Forschungsgemeinschaft (Exzellenzcluster Hearing4all).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kral.

Ethics declarations

Interessenkonflikt

A. Kral gibt an, dass kein Interessenkonflikt besteht. A. Kral führt Forschungsprojekte in Kooperation mit MedEl GmbH, Cochlear Ltd und Sonova (Advanced Bionics) durch.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kral, A. Pathophysiologie des Hörverlusts. HNO 65, 290–297 (2017). https://doi.org/10.1007/s00106-016-0183-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0183-1

Schlüsselwörter

Keywords

Navigation