Skip to main content
Log in

Stationäre evozierte Potenziale des auditorischen Systems

Ein Methodenvergleich

Steady-state responses of the auditory system

A comparison of different methods

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die objektive Hörschwellenbestimmung beim Kind gehört zu den wichtigsten Aufgaben der Audiologie. Wegen gravierender Unzulänglichkeiten der bisher hierfür eingesetzten Methoden (BERA, CERA) muss nach methodischen Verbesserungen gesucht werden. Einen erfolgversprechenden Ansatz stellen möglicherweise die „amplitude modulation following responses“ (AMFR) dar. Diese objektiven Reizantworten weisen im Gegensatz zu den konventionellen transienten akustisch evozierten Potentialen eine hohe Frequenzspezifität auf und lassen Aussagen über das Hörvermögen im Tieftonbereich zu.

Probanden und Methoden

Ziel unserer Studie war die Objektivierung der Hörschwelle bei normalhörenden Probanden unterschiedlichen Alters. Als subjektiver Kontrolltest erfolgte eine Tonaudiometrie, als objektive Tests die Messung von AMFR (mit 2 verschiedenen Geräten und unterschiedlichen Parametern) sowie die CERA („cortical electric response audiometry“). Die Tests wurden bzgl. der Genauigkeit der Hörschwellenbestimmung verglichen und auf Praktikabilität untersucht.

Ergebnisse

Bei den AMFR zeigten sich z. T. große Abweichungen zwischen subjektiver Hörschwelle und objektiv bestimmter Reizantwortschwelle, wobei die kleinsten Abweichungen bei niedrigen Frequenzen auftraten. Bezüglich der Genauigkeit der Hörschwellenbestimmung war die CERA den AMFR überlegen.

Fazit

Trotz der teilweise großen Abweichungen der durch die AMFR ermittelten objektiven Schwellen halten wir die Methode dafür geeignet, Lücken in der objektiven Hörschwellenbestimmung, zumindest im Bereich niedriger Frequenzen, zu schließen.

Abstract

Background

Determining the hearing threshold in children is one of the most important topics in audiology. Because the existing methods—brainstem evoked response audiometry (BERA) and cortical evoked response audiometry (CERA)—show some severe insufficiencies, it is necessary to look for improved methods. A promising approach may be amplitude modulation following responses (AMFR). In contrast to the conventional transient auditory evoked potentials, these responses show a high-frequency specificity, and they possibly allow statements about the hearing threshold in the low-frequency range.

Subjects and methods

The purpose of our study was to objectively detect the hearing threshold in normal-hearing persons of various ages. Pure-tone audiometry served as a subjective control test. For objective tests, we used the measurement of AMFR (two different systems with distinct parameters) and CERA. We compared the different methods with regard to accuracy of the determination of the hearing threshold and investigated the practicability.

Results

The results showed some large deviations between the subjective hearing threshold and the objectively determined responses. The lowest deviations appeared at low frequencies. With respect to the variability of results, CERA was clearly superior to AMFR.

Conclusion

Despite large deviations in the responses objectively determined by AMFR, we think AMFR is suitable to close some gaps in determining objective hearing thresholds, at least at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 9
Abb. 9
Abb. 10

Literatur

  1. Aoyagi M, Kiren T, Kim Y et al. (1993) Optimal modulation frequency for amplitude-modulation following response in young children during sleep. Hear Res 65: 253–261

    Article  PubMed  CAS  Google Scholar 

  2. Cebulla M, Stürzebecher E, Wernecke KD (2001) Objective detection of the amplitude modulation following response (AMFR). Audiology 40: 245–252

    Article  PubMed  CAS  Google Scholar 

  3. Chambers RD, Meyer TA (1993) Reliability of threshold estimation in hearing-impaired adults using the AMFR. J Am Acad Audiol 4: 22–32

    PubMed  CAS  Google Scholar 

  4. Cohen LT, Rickards FW, Clark GM (1991) A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. J Acoust Soc Am 90: 2467–2479

    Article  PubMed  CAS  Google Scholar 

  5. Cone-Wesson B, Wunderlich J (2003) Auditory evoked potentials from the cortex: audiology applications. Curr Opin Otolaryngol Head Neck Surg 11: 372–377

    Article  PubMed  Google Scholar 

  6. Dobie RA, Wilson MJ (1989) Analysis of auditory evoked potentials by magnitude-squared coherence. Ear Hear 10: 2–13

    Article  PubMed  CAS  Google Scholar 

  7. Dobie RA, Wilson MJ (1995) Comparison of objective threshold estimation procedures for 40-Hz auditory evoked potentials. Ear Hear 16: 299–310

    Article  PubMed  CAS  Google Scholar 

  8. Dobie RA, Wilson MJ (1998) Low-level steady-state auditory evoked potentials: effects of rate and sedation on detectability. J Acoust Soc Am 104: 3482–3488

    Article  PubMed  CAS  Google Scholar 

  9. Griffiths SK, Chambers RD (1991) The amplitude modulation-following response as an audiometric tool. Ear Hear 12: 235–241

    Article  PubMed  CAS  Google Scholar 

  10. Herdman AT, Stapells DR (2001) Thresholds determined using the monotic and dichotic multiple auditory steady-state response technique in normal-hearing subjects. Scand Audiol 30: 41–49

    Article  PubMed  CAS  Google Scholar 

  11. Hönerloh HJ, Kletti J (1981) Ein Verfahren zur Objektivierung von ERA-Messungen. Laryngol Rhinol Otol 60: 178–180

    Google Scholar 

  12. Hoth S (1993) Computer-aided hearing threshold determination from cortical auditory evoked potentials. Scand Audiol 22: 165–177

    PubMed  CAS  Google Scholar 

  13. Jerger J (1998) The auditory steady-state response. J Am Acad Audiol 9: 314

    PubMed  CAS  Google Scholar 

  14. John MS, Dimitrijevic A, Roon P van, Picton TW (2001) Multiple auditory steady-state responses to AM and FM stimuli. Audiol Neurootol 6: 12–27

    Article  PubMed  CAS  Google Scholar 

  15. John MS, Picton TW (2000) Human auditory steady-state responses to amplitude-modulated tones: phase and latency measurements. Hear Res 141: 57–79

    Article  PubMed  CAS  Google Scholar 

  16. Kevanishvili ZS, Von Specht H (1979) Human slow auditory evoked potentials during natural and drug-induced sleep. Electroencephalogr Clin Neurophysiol 47: 280–288

    Article  PubMed  CAS  Google Scholar 

  17. Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21: 179–192

    Article  PubMed  CAS  Google Scholar 

  18. Levi EC, Folsom RC, Dobie RA (1993) Amplitude-modulation following response (AMFR): effects of modulation rate, carrier frequency, age, and state. Hear Res 68: 42–52

    Article  PubMed  CAS  Google Scholar 

  19. Lins OG, Picton TW, Boucher BL et al. (1996) Frequency-specific audiometry using steady-state responses. Ear Hear 17: 81–96

    Article  PubMed  CAS  Google Scholar 

  20. Oates P, Stapells DR (1998) Auditory brainstem response estimates of the pure-tone audiogram: current status. Semin Hear 19: 61–85

    Article  Google Scholar 

  21. Perez-Abalo MC, Savio G, Torres A et al. (2001) Steady state responses to multiple amplitude-modulated tones: an optimized method to test frequency-specific thresholds in hearing-impaired children and normal-hearing subjects. Ear Hear 22: 200–211

    Article  PubMed  CAS  Google Scholar 

  22. Pethe J, Hocke T, Mühler R, Specht H von (2000) On the frequency spectrum of amplitude modulation following responses. Scand Audiol 29: 191–195

    Article  PubMed  CAS  Google Scholar 

  23. Pethe J, Mühler R, Siewert K, Specht H von (2004) Near-threshold recordings of amplitude modulation following responses (AMFR) in children of different ages. Int J Audiol 43: 339–345

    Article  PubMed  Google Scholar 

  24. Pethe J, Mühler R, Specht H von (2002) Amplitude modulation following responses (AMFR) in der audiologischen Diagnostik. HNO 50: 1045–1052

    Article  PubMed  CAS  Google Scholar 

  25. Pethe J, Mühler R, Specht H von (2001) Abhängigkeit der „Amplitude Modulation Following Response“ von der Vigilanz. HNO 49: 188–193

    Article  PubMed  CAS  Google Scholar 

  26. Pethe J, Specht H von, Mühler R, Hocke T (2001) Amplitude modulation following responses in awake and sleeping humans–a comparison for 40 Hz and 80 Hz modulation frequency. Scand Audiol Suppl: 152–155

    Article  Google Scholar 

  27. Picton TW, Dimitrijevic A, John MS, Van Roon P (2001) The use of phase in the detection of auditory steady-state responses. Clin Neurophysiol 112: 1698–1711

    Article  PubMed  CAS  Google Scholar 

  28. Picton TW, Skinner CR, Champagne SC et al. (1987) Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. J Acoust Soc Am 82: 165–178

    Article  PubMed  CAS  Google Scholar 

  29. Plinkert PK, Zenner HP (1990) Are cochlear outer hair cells the origin of otoacoustic emissions?. Rev Laryngol Otol Rhinol (Bord) 111: 41–43

    Google Scholar 

  30. Rance G, Dowell RC, Rickards FW et al. (1998) Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response. Ear Hear 19: 48–61

    Article  PubMed  CAS  Google Scholar 

  31. Rance G, Rickards FW, Cohen LT et al. (1995) The automated prediction of hearing thresholds in sleeping subjects using auditory steady-state evoked potentials. Ear Hear 16: 499–507

    Article  PubMed  CAS  Google Scholar 

  32. Schönweiler R, Neumann A, Ptok M (2005) Tonfrequenzevozierte Potentiale: Optimierung von Reizpolarität, Reizrate, Reizdauer, Notched-Noise-Pegel und Ermittlung von Potenzialschwellen bei hormalhörenden Probanden HNO 53: 983–994

  33. Stenklev NC, Laukli E (2004) Presbyacusis-hearing thresholds and the ISO 7029. Int J Audiol 43: 295–306

    Article  PubMed  Google Scholar 

  34. Valdes JL, Perez-Abalo MC, Martin V et al. (1997) Comparison of statistical indicators for the automatic detection of 80 Hz auditory steady state responses. Ear Hear 18: 420–429

    Article  PubMed  CAS  Google Scholar 

  35. Wunderlich JL, Cone-Wesson BK, Shepherd R (2006) Maturation of the cortical auditory evoked potential in infants and young children. Hear Res 212: 185–202

    Article  PubMed  Google Scholar 

  36. Zenner HP (1997) The role of outer hair cell damage in the loss of hearing. Ear Nose Throat J 76: 140, 143–144

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Liebler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liebler, S., Hoth, S. & Plinkert, P. Stationäre evozierte Potenziale des auditorischen Systems. HNO 56, 1025–1039 (2008). https://doi.org/10.1007/s00106-008-1694-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-008-1694-1

Schlüsselwörter

Keywords

Navigation