Skip to main content

Advertisement

Log in

Chromosomale Alterationen beim juvenilen Angiofibrom

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Juvenile Angiofibrome erscheinen histologisch gutartig, wachsen aber lokal aggressiv. Sie treten überwiegend bei männlichen Adoleszenten auf. Als einzige genetische Veränderung sind bisher β-Catenin-Mutationen bei diesem Tumor bekannt.

Material und Methoden

Angiofibromgewebe von 7 Patienten wurde mittels der vergleichenden genomischen Hybridisierung (CGH) auf quantitative Genomveränderungen hin analysiert.

Ergebnisse

In 6 von 7 untersuchten Angiofibromen konnten mit der CGH auf 18 verschiedenen Chromsomen Alterationen nachgewiesen werden. Zugewinne von chromosomalen Abschnitten zeigten sich gehäuft auf den Chromosomen 4q, 6q und 8q. In 4 von 7 Fällen zeigte sich ein vollständiger Verlust des Y-Chromosoms.

Fazit

Die CGH ist zur Analyse chromosomaler Veränderungen bei Angiofibromen geeignet. Mögliche Zielsequenzen für weitere Genomuntersuchungen, v. a. zum Verlust des Y-Chromosoms, konnten lokalisiert werden.

Abstract

Introduction

Despite their benign histological appearance, juvenile angiofibromas, which occur mainly in adolescent males, have a locally aggressive growth pattern. β-catenin-mutations represent their only known genetic abnormality.

Material and methods

Angiofibroma tissue from seven patients was available for comparative genomic hybridization (CGH).

Results

In six out of the seven angiofibromas, CGH detected various abnormalities on 18 different chromosomes. Frequent chromosomal gains were observed on chromosomes 4q, 6q, and 8q. In four out of seven angiofibromas a complete loss of the chromosome Y was detected.

Conclusions

CGH is a suitable method for the examination of angiofibromas for genetic alterations. Considering the sex distribution of this neoplasm, the frequent loss of chromosome Y is of particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1.
Abb. 2.
Abb. 3.

Literatur

  1. Abraham SC, Montgomery EA, Giardiello FM, Wu TT (2001) Frequent β-catenin mutations in juvenile nasopharyngeal angiofibromas. Am J Pathol 158: 1073–1078

    CAS  PubMed  Google Scholar 

  2. Arakaki DT, Sparks RS (1963) Microtechnique for culturing leukocytes from whole blood. Cytogen 2: 57–60

    Google Scholar 

  3. Beham A, Beham-Schmid C, Regauer S, Aubock L, Stammberger H (2000) Nasopharyngeal angiofibroma: true neoplasm or vascular malformation? Adv Anat Pathol 7: 36–46

    Google Scholar 

  4. Beham A, Fletcher CD, Kainz J, Schmid C, Humer U (1993) Nasopharyngeal angiofibroma: an immunhistochemical study of 32 cases. Virchows Arch A Pathol Anat Histiopathol 423: 281–285

    CAS  Google Scholar 

  5. Beham A, Kainz J, Stammberger H, Aubock L, Beham-Schmid C (1997) Immunhistochemical and electron microscopical charakterization of stromal cells in nasopharyngeal angiofibromas. Eur Arch Otorhinolaryngol 254: 196–199

    CAS  PubMed  Google Scholar 

  6. Beham A, Regauer S, Beham-Schmid C, Kainz J, Stammberger H (1998) Expression of CD 34-antigen in nasopharyngeal angiofibroma. Int J Pediatr Otorhinolaryngol 44: 245–250

    Google Scholar 

  7. Blanco P, Sargent CA, Boucher CA, Mitchell M, Affara NA (2000) Conservation of PCDHX in mammals; expression of human X/Y genes predominantly in brain. Mamm Genome 11: 906–914

    Article  CAS  PubMed  Google Scholar 

  8. Bockmühl U, Küchler I, Petersen I (2000) Verbesserte Prognoseeinschätzung bei Kopf-Hals-Karzinomen durch neue genetische Marker. HNO 48: 451–456

    Article  PubMed  Google Scholar 

  9. Brown CJ, Goss SJ, Lubahn DB et al. (1989) Androgen receptor locus on the human X chromsome: regional localization to Xq11–12 and description of a DNA polymorphism. Am J Hum Genet 44: 264–269

    CAS  PubMed  Google Scholar 

  10. Claesson W (1994) Platelet-derived growth factor receptor signals. J Biol Chem 269: 32023–32026

    PubMed  Google Scholar 

  11. Coutinho CM, Bassini AS, Gutierrez LG, Butugan O, Kowalski PL, Brentani MM, Nagai MA (1999) Genetic alterations in Ki-ras and Ha-ras genes in juvenile nasopharyngeal angiofibromas and head and neck cancer. Sao Paulo Med J 117: 113–120

    CAS  PubMed  Google Scholar 

  12. Dhawan P, Richmond A (2002) Role of CXCL1 in tumorigenesis of melanoma. J Leukoc Biol 72: 9-18

    CAS  PubMed  Google Scholar 

  13. Dillard DG, Cohen C, Muller D et al. (2000) Immunolocalization of activated transforming growth factor beta 1 in juvenile nasopharyngeal angiofibroma. Arch Otolaryngol Head Neck Surg 126: 723–725

    CAS  PubMed  Google Scholar 

  14. Farag MM, Ghanimah SE, Ragaie A, Saleem TH (1987) Hormonal receptors in juvenile nasopharyngeal angiofibroma. Laryngoscope 97: 208–211

    CAS  PubMed  Google Scholar 

  15. Ferouz AS, Mohr RM, Paul P (1995) Juvenile nasopharyngeal angiofibroma and familial adenomatous polyposis: an association? Otolaryngol Head Neck Surg 113: 435–439

    Google Scholar 

  16. Giardiello FM, Hamilton SR, Krush AJ et al. (1993) Nasopharyngeal angiofibroma in patients with familial adenomatous polyposis. Gastroenterology 105: 1550–1552

    Google Scholar 

  17. Guertl B, Beham A, Zechner R, Stammberger H, Hoefler G (2000) Nasopharyngeal angiofibroma: an APC-gene-associated tumor? Hum Pathol 31: 1411–1413

    Google Scholar 

  18. Hwang HC, Mills SE, Patterson K, Gown AM (1998) Expression of androgen receptors in nasopharyngeal angiofibroma: an immunhistochemical study of 24 cases. Mod Pathol 11: 1122–1126

    CAS  PubMed  Google Scholar 

  19. Kallionemi A, Kallionemi OP, Sudar D et al. (1992) Comparative genomic hybridisation for molecular cytogenetic analysis of solid tumors. Science 285: 818–821

    Google Scholar 

  20. Koga T, Iwasaki H, Ishiguro M, Matsuzaki A, Kikuchi M (2002) Frequent genomic imbalances in chromsomes 17, 19, and 22q in peripheral nerve sheath tumours detected by comparative genomic hybridisation analysis. J Pathol 197: 98–107

    Article  CAS  PubMed  Google Scholar 

  21. Kondo M, Osada H, Uchida K et al. (1998) Molecular cloning of human TAK1 and its mutational analysis in human lung cancer. Int J Cancer 75: 559–563

    Google Scholar 

  22. Kunz M, Hartmann A. (2002) Angiogenese-Antiangiogenese. Bedeutung für Tumorwachstum und Metastasierung. Hautarzt 53: 373–384

    Article  Google Scholar 

  23. Loukinova E, Chen Z, Van Waes C, Dong G (2001) Expression of proangiogenic chemokine Gro 1 in low and high metastatic variants of Pam murine squamous cell carcinoma is differentially regulated by IL-1alpha, EGF and TGF-beta1 through NF-kappaB dependent and independent mechanisms. Int J Cancer 94: 637–644

    Google Scholar 

  24. Missiaglia E, Moore PS, Williamson J et al. (2002) Sex chromosome anomalies in pancreatic endocrine tumors. Int J Cancer 98: 532–538

    Google Scholar 

  25. Mumm S, Molini B, Terrell J, Srivastava A, Schlessinger D (1997) Evolutionary features of the 4-Mb Xq21.3 XY homology region revealed by a map at 60-kb resolution. Genome Res 7: 307–314

    CAS  PubMed  Google Scholar 

  26. Robinson S, Cohen M, Prayson R et al. (2001) Constitutive expression of growth-related oncogene and its receptor in oligodendrogliomas. Neurosurg 48: 864–867

    CAS  Google Scholar 

  27. Robinson S, Franic LA (2001) Chemokine GRO1 and the spatial and temporal regulation of oligodendrocyte precursor proliferation. Dev Neurosci 23: 338–345

    Article  CAS  PubMed  Google Scholar 

  28. Schick B, Brunner C, Praetorius M, Plinkert PK, Urbschat S (2002) First evidence of genetic imbalances in angiofibromas. Laryngoscope 112: 397–401

    CAS  PubMed  Google Scholar 

  29. Schick B, Kahle G (2000) Radiological findings in angiofibroma. Acta Radiol Radiolgical 41: 585–593

    Article  CAS  Google Scholar 

  30. Schick B, Kind M, Schwarzkopf G, Weber R, Draf W (1997) Das frühkindliche Angiofibrom in ungewöhnlicher Lokalisation HNO 45: 1022–1028

  31. Schick B, Plinkert PK, Prescher A (2002) Die vaskuläre Komponente: Gedanken zur Entstehung des Angiofibroms. Laryngorhinootologie 81: 280–284

    Article  CAS  PubMed  Google Scholar 

  32. Toida M, Balazs M, Mori T et al. (2001) Analysis of genetic alterations in salivary gland tumors by comparative genomic hybridisation. Cancer Genet Cytogenet 127: 34–37

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Ulrike Bechtel für die technische Assistenz bei den vergleichenden genomischen Hybridisierungen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brunner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, C., Urbschat, S., Jung, V. et al. Chromosomale Alterationen beim juvenilen Angiofibrom. HNO 51, 981–985 (2003). https://doi.org/10.1007/s00106-003-0857-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-003-0857-3

Schlüsselwörter

Keywords

Navigation