Skip to main content
Log in

Niedrigflußnarkosen mit Desfluran

Low-flow anaesthesia with desflurane

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Desfluran und Frischgasfluß

Desfluran ist wegen seiner guten Steuerbarkeit ein gerade für die Durchführung von Niedrigflußnarkosen besonders geeignetes Inhalationsanästhetikum. Bereits nach einer nur 10 min dauernden Initialphase mit hohem Frischgasfluß kann der Flow schon vermindert werden. Die zu diesem Zeitpunkt erreichte inspiratorische Desflurankonzentration, die etwa 90% der Frischgaskonzentration beträgt, kann bei der Durchführung der Low Flow-Anästhesie (1 l/min) ohne Veränderung der Verdampfereinstellung aufrechterhalten werden, bei Minimal Flow-Anästhesie (0,5 l/min) hingegen ist eine Erhöhung der Verdampfereinstellung auf einen Wert 1–2% höher als den angestrebten inspiratorischen Sollwert erforderlich. Wird die hohe, vom Desfluranverdampfer abgegebene Maximalkonzentration von 18% genutzt, läßt sich, bei gleichzeitig substanzspezifisch geringer individueller Narkosemittelaufnahme durch den Patienten, die inspiratorische Konzentration bei einem Flow von 0,5 l/min in nur 8 min um etwa 5% erhöhen.

Kohlenmonoxid

Die Kohlenmonoxidhämoglobinkonzentration nimmt in 1 h von einem präoperativen Wert von 2, 13±1,05% auf 1,42±1,01% ab. Werden alle Maßnahmen getroffen, ein unbeabsichtigtes Austrocknen des Atemkalks sicher zu vermeiden, besteht auch bei Durchführung von Niedrigflußnarkosen mit Desfluran kein erhöhtes Risiko einer akzidentellen Kohlenmonoxidvergiftung.

Schlußfolgerung

Die Anwendung von Desfluran mit hohem Frischgasfluß muß unter ökonomischen und ökologischen Aspekten kritisch betrachtet werden, so daß die routinemäßige Anwendung dieses Anästhetikums nur bei konsequenter Durchführung von Niedrigflußnarkosen zu empfehlen ist.

Abstract

Objectives

Due to its low solubility and negligible metabolism, desflurane is assumed to be especially suitable for application by low-flow anaesthetic techniques. The aim of this clinical investigation was the development of a standardised dosing scheme for low-flow and minimal-flow desflurane anaesthesia.

Methods

One hundred six ASA status I–II patients were assigned to six groups according to the duration of the initial high-flow phase, fresh gas flow, and fresh-gas desflurane concentration. The median age, height, body weight, and constitution of the groups was comparable. After an initial high-flow phase using 4.4 l/min, the fresh gas flow was reduced to 0.5 l/min (minimal-flow anaesthesia) or 1.0 l/min (low-flow anaesthesia). Inspired nitrous oxide concentrations were maintained at 60% to 70%. Using different standardised schemes of vaporizer settings, inspired desflurane concentrations were applied in the range from 3.4% to 8.7%, i.e., between 1 and 1.5 MAC. Inspired and expired desflurane concentrations were measured continuously by the side-stream technique and recorded on-line. Venous blood samples were taken immediately prior to induction and 45 min after flow reduction for measurement of carboxyhaemoglobin (COHb) concentration).

Results

In the 10- to 15-min initial phase during which a high fresh gas flow of 4.4 l/min was used, the inspired desflurane concentration reached values in the range of 90%–95% of the fresh gas concentration. In low-flow anaesthesia this concentration could be maintained without any alteration of the vaporizer setting, whereas in minimal-flow anaesthesia with flow reduction the fresh gas concentration had to be increased by 1% to 2%:The quotient calculated by division of the inspired desflurane concentration by its fresh gas concentration (Q=CI/CF) ranges between 0.65 and 0.75 in minimal-flow and between 0.80 and 0.85 in low-flow anaesthesia. If use was made of the wide output range of the desflurane vaporizer, the inspired concentration could be increased rapidly by about 5% in 8 min, although the flow was kept constant at 0.5 l/min. Compared with its value prior to induction (2.13±1.05%), the COHb concentration decreased statistically significantly by about 0.7% during the 1 st hour of minimal-flow anaesthesia (1.42±1.01%). In no case was a COHb concentration observed that exceeded threatening or even toxic values, although the soda lime was changed routinely only once a week.

Conclusions

The pharmacokinetic properties of desflurane, resulting in especially low individual uptake, and the wide output range of the vaporizer facilitate the use of low-flow anaesthetic techniques in routine clinical practice. Even in minimal-flow anaesthesia, the duration of the initial high-flow phase can be shortened to min. If the flow is reduced to 1 l/min, the inspired desflurane concentration achieved in the initial high-flow phase can be maintained without any alteration of the vaporizer setting. In minimal-flow anaesthesia, however, with flow reduction to 0.5 l/min, the fresh gas concentration has to be increased to a value 1%–2% higher than the inspired nominal value. Due to the wide dialling range of the desflurane vaporizer, the amount of vapour delivered into the breathing system can be increased to about 110 ml/min even at a flow of 0.5 l/min. The large amount of agent that can be delivered into the system even under low-flow conditions, together with the very low individual uptake, results in a time-constant that is sufficiently short for the clinically required rapid increase in inspired desflurane concentrations. The short time-constant of low-flow desflurane anaesthesia improves the control of the anaesthetic concentration. If all measures are taken to safely avoid inadvertent drying out of the soda lime, there is no evidence that low-flow anaesthesia with desflurane is liable to increase the risk of accidental carbon monoxide poisoning. As the use of desflurane with high-flow anaesthetic techniques becomes wasteful, its routine clinical use from an economic and ecologic standpoint will only be justified if consistently applied with low-flow or minimal-flow anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Baum J (1994) Niedrigflußnarkosen. Anaesthesist 43:194–210

    Article  CAS  PubMed  Google Scholar 

  2. Baum JA (1996) Low-flow anaesthesia. The theory and practice of low flow, minimal flow and closed system anaesthesia. Butterworth-Heinemann, Oxford, pp 31–39, pp 87–131

    Google Scholar 

  3. Baum J, Sachs G, v d Driesch Ch, Stanke HG (1995) Carbon monoxide generation in carbon di-oxide absorbents. Anesth Analg 81:144–146

    CAS  PubMed  Google Scholar 

  4. Conway CM (1984) Closed and low flow systems. Theoretical considerations. Acta Anaesth Belg 34:257–263

    Google Scholar 

  5. Eger II El (1995) Physicochemical properties and pharmacodynamics of desflurane. Anaesthesia [Suppl] 50:3–8

    Article  PubMed  Google Scholar 

  6. Eger II El (1995) Economic analysis and pharmaceutical policy: a consideration of the economics of the use of desflurane. Anaesthesia [Suppl] 50:45–48

    Article  PubMed  Google Scholar 

  7. Fang ZX, Eger II El, Laster MJ, Chortkoff BS, Kandel L, Ionescu P (1995) Carbon monoxide production from degradation of desfluran, enflurane, isoflurane, halothane and sevoflurane by soda lime and baralyme®. Anesth Analg 80:1187–1193

    CAS  PubMed  Google Scholar 

  8. Frink EJ, Nogami W, Morgan SE, Salmon R (1995) Desflurane anesthesia using dry baralyme produces high carboxyhemoglobin levels in pigs. Anesthesiology (No 3A) 83:A294

    Google Scholar 

  9. Hargasser S, Hipp R, Breinbauer B, Mielke L, Entholzner E, Rust M (1995) A lower solubility recommends the use of desflurance more than isoflurane, halothane, and enflurane under low-flow conditions. J Clin Anesth 7:1–5

    Article  Google Scholar 

  10. Hendrickx J, De Wolf AM (1995) Costs of administering desflurane or isoflurane via a closed circuit. Anesthesiology 80:240–242

    Google Scholar 

  11. Kuhn I, Wissing H, Vettermann J (1995) Ein neues Arbeitsblatt zur Berechnung von Narkosekosten. Anästh Intensivmed 36:242–248

    Google Scholar 

  12. Norgan NG (1994) Population differences in body composition in relation to the body mass index. Eur J Clin Nutr [Suppl 3] 48:S10–S25

    PubMed  Google Scholar 

  13. Olsson GL (1995) Inhalational anaesthesia at the extremes of age: paediatric anaesthesia. Anaesthesia [Suppl] 50:34–36

    Article  PubMed  Google Scholar 

  14. Zacharowski K (1995) Die unblutige und präzise Bestimmung von Carboxyhämoglobin und Blutvolumen. Inauguraldissertation aus dem Institut für Physiologie und Pathophysiologie der Johannes Gutenberg-Universität, Mainz, S 54 u 87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baum, J., Berghoff, M., Stanke, HG. et al. Niedrigflußnarkosen mit Desfluran. Anaesthesist 46, 287–293 (1997). https://doi.org/10.1007/s001010050403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001010050403

Schlüsselwörter

Key words

Navigation