Skip to main content
Log in

Nahinfrarotspektroskopie

Technik, Entwicklung, aktueller Einsatz und Ausblick

Near-infrared spectroscopy

Technique, development, current use and perspectives

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

A Leserbriefe to this article was published on 21 April 2021

A Leserbriefe to this article was published on 06 April 2021

Zusammenfassung

Seit über 4 Jahrzehnten ist die Nahinfrarotspektroskopie (NIRS) in Forschung und klinischer Praxis verfügbar. Zuletzt gab es zahlreiche Veröffentlichungen und wesentliche Entwicklungen auf diesem Gebiet. Dieser Beitrag beschreibt die klinische Anwendung von NIRS in Bezug auf aktuelle Leitlinien, mit dem Schwerpunkt auf der Kinder- und Herzanästhesie. Es werden technische und physiologische Grundlagen und Fallstricke im klinischen Einsatz diskutiert sowie (patho-)physiologische Einflussfaktoren und abgeleitete Größen wie die „fractional oxygen extraction“ (FOE) und der „cerebral oxygen index“ (COx) dargestellt. Empfehlungen für die Interpretation von NIRS-Werten im Zusammenhang mit Einflussfaktoren wie Sauerstofftransportkapazität, Gasaustausch und Kreislauf sowie ein Algorithmus für die Kardioanästhesie werden präsentiert. Limitationen der Methode und die fehlende Vergleichbarkeit von Werten verschiedener Geräte sowie allgemein anerkannte Normwerte werden erklärt. Technische Unterschiede und Vorteile gegenüber Pulsoxymetrie und transkranieller Dopplersonographie werden beleuchtet. Abschließend werden die prognostische Bedeutung und Anforderungen an zukünftige klinische Studien erörtert.

Abstract

Near-infrared spectroscopy (NIRS) has been available in research and clinical practice for more than four decades. Recently, there have been numerous publications and substantial developments in the field. This article describes the clinical application of NIRS in relation to current guidelines, with a focus on pediatric and cardiac anesthesia. It discusses technical and physiological principles, pitfalls in clinical use and presents (patho)physiological influencing factors and derived variables, such as fractional oxygen extraction (FOE) and the cerebral oxygen index (COx). Recommendations for the interpretation of NIRS values in connection with influencing factors, such as oxygen transport capacity, gas exchange and circulation as well as an algorithm for cardiac anesthesia are presented. Limitations of the method and the lack of comparability of values from different devices as well as generally accepted standard values are explained. Technical differences and advantages compared to pulse oxymetry and transcranial Doppler sonography are illuminated. Finally, the prognostic significance and requirements for future clinical studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

Verwendete Literatur

  1. Alderliesten T, van Bel F, van der Aa NE, Steendijk P, van Haastert IC, de Vries LS, Groenendaal F, Lemmers P (2019) Low cerebral oxygenation in preterm infants is associated with adverse neurodevelopmental outcome. J Pediatr 207:109–116.e2. https://doi.org/10.1016/j.jpeds.2018.11.038

    Article  PubMed  Google Scholar 

  2. Alosh H, Ramirez A, Mink R (2016) The correlation between brain near-infrared spectroscopy and cerebral blood flow in piglets with intracranial hypertension. J Appl Physiol 121(1):255–260. https://doi.org/10.1152/japplphysiol.00760.2015

    Article  CAS  PubMed  Google Scholar 

  3. Aly SA, Zurakowski D, Glass P, Skurow-Todd K, Jonas RA, Donofrio MT (2017) Cerebral tissue oxygenation index and lactate at 24 hours postoperative predict survival and neurodevelopmental outcome after neonatal cardiac surgery. Congenit Heart Dis 12(2):188–195. https://doi.org/10.1111/chd.12426

    Article  PubMed  Google Scholar 

  4. Andersen AV, Simonsen SA, Schytz HW, Iversen HK (2018) Assessing low-frequency oscillations in cerebrovascular diseases and related conditions with near-infrared spectroscopy: a plausible method for evaluating cerebral autoregulation? Neurophoton 5(3):30901

    Google Scholar 

  5. Arora L, Hosn MA (2019) Spinal cord perfusion protection for thoraco-abdominal aortic aneurysm surgery. Curr Opin Anesthesiol 32(1):72–79

    Google Scholar 

  6. Badner NH, Nicolaou G, Clarke CF, Forbes TL (2011) Use of spinal near-infrared spectroscopy for monitoring spinal cord perfusion during endovascular thoracic aortic repairs. J Cardiothorac Vasc Anesth 25(2):316–319

    PubMed  Google Scholar 

  7. Bailey SM, Hendricks-Muñoz KD, Wells JT, Mally P (2010) Packed red blood cell transfusion increases regional cerebral and splanchnic tissue oxygen saturation in anemic symptomatic preterm infants. Am J Perinatol 27(6):445–453

    PubMed  Google Scholar 

  8. Becke K, Schreiber M, Philippi-Höhne C, Strauß J, Engelhard K, Sinner B (2013) Anesthesia-induced neurotoxicity: statement of the scientific working groups for pediatric anesthesia and neuroanesthesia. Anaesthesist 62(2):101–104

    CAS  PubMed  Google Scholar 

  9. Bickler P, Feiner J, Rollins M, Meng L (2017) Tissue oximetry and clinical outcomes. Anesth Analg 124(1):72–82

    PubMed  Google Scholar 

  10. Bishay M, Giacomello L, Retrosi G et al (2013) Hypercapnia and acidosis during open and thoracoscopic repair of congenital diaphragmatic hernia and esophageal atresia: results of a pilot randomized controlled trial. Ann Surg 258(6):895–900

    PubMed  Google Scholar 

  11. Brady K, Joshi B, Zweifel C et al (2010) Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 41(9):1951–1956

    PubMed  PubMed Central  Google Scholar 

  12. Brown CH, Neufeld KJ, Tian J et al (2019) Effect of targeting mean arterial pressure during cardiopulmonary bypass by monitoring cerebral autoregulation on postsurgical delirium among older patients: a nested randomized clinical trial. JAMA Surg 154(9):819–826. https://doi.org/10.1001/jamasurg.2019.1163

    Article  PubMed  PubMed Central  Google Scholar 

  13. Casati A, Fanelli G, Pietropaoli P, Proietti R, Tufano R, Danelli G, Fierro G, De Cosmo G, Servillo G (2005) Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 101(3):740–747. https://doi.org/10.1213/01.ane.0000166974.96219.cd

    Article  PubMed  Google Scholar 

  14. Chan B, Aneman A (2019) A prospective, observational study of cerebrovascular autoregulation and its association with delirium following cardiac surgery. Anaesthesia 74(1):33–44

    CAS  PubMed  Google Scholar 

  15. Chan MJ, Chung T, Glassford NJ, Bellomo R (2017) Near-infrared spectroscopy in adult cardiac surgery patients: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth 31(4):1155–1165. https://doi.org/10.1053/j.jvca.2017.02.187

    Article  PubMed  Google Scholar 

  16. Chuan A, Short TG, Peng AZY, Wen SYB, Sun AX, Ting TH, Wan AS, Pope L, Laeger M, Aneman A (2019) Is cerebrovascular autoregulation associated with outcomes after major noncardiac surgery? A prospective observational pilot study. Acta Anaesthesiol Scand 63(1):8–17. https://doi.org/10.1111/aas.13223

    Article  PubMed  Google Scholar 

  17. Colak Z, Borojevic M, Bogovic A, Ivancan V, Biocina B, Majeric-Kogler V (2015) Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: a randomized, prospective study. Eur J Cardiothorac Surg 47(3):447–454. https://doi.org/10.1093/ejcts/ezu193

    Article  PubMed  Google Scholar 

  18. Conforti A, Giliberti P, Landolfo F, Valfrè L, Columbo C, Mondi V, Capolupo I, Dotta A, Bagolan P (2016) Effects of ventilation modalities on near-infrared spectroscopy in surgically corrected CDH infants. J Pediatr Surg 51(3):349–353. https://doi.org/10.1016/j.jpedsurg.2015.07.021

    Article  PubMed  Google Scholar 

  19. Costerus S, Vlot J, van Rosmalen J, Wijnen R, Weber F (2019) Effects of neonatal thoracoscopic surgery on tissue oxygenation: a pilot study on (neuro-) monitoring and outcomes. Eur J Pediatr Surg 29(2):166–172. https://doi.org/10.1055/s-0037-1615277

    Article  PubMed  Google Scholar 

  20. Couture EJ, Deschamps A, Denault AY (2019) Patient management algorithm combining processed electroencephalographic monitoring with cerebral and somatic near-infrared spectroscopy: a case series. Can J Anesth 66(5):532–539

    PubMed  Google Scholar 

  21. Dani C, Pratesi S, Fontanelli G, Barp J, Bertini G (2010) Blood transfusions increase cerebral, splanchnic, and renal oxygenation in anemic preterm infants. Transfusion 50(6):1220–1226

    PubMed  Google Scholar 

  22. Davie SN, Grocott HP (2012) Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116(4):834–840

    CAS  PubMed  Google Scholar 

  23. de Graaff JC (2018) Intraoperative blood pressure levels in young and anaesthetised children: are we getting any closer to the truth? Curr Opin Anaesthesiol 31(3):313–319

    PubMed  Google Scholar 

  24. de Tournay-Jetté E, Dupuis G, Bherer L, Deschamps A, Cartier R, Denault A (2011) The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 25(1):95–104. https://doi.org/10.1053/j.jvca.2010.03.019

    Article  PubMed  Google Scholar 

  25. de Waal EE, de Vries JW, Kruitwagen CL, Kalkman CJ (2002) The effects of low-pressure carbon dioxide pneumoperitoneum on cerebral oxygenation and cerebral blood volume in children. Anesth Analg 94(3):500–505

    PubMed  Google Scholar 

  26. Denault A, Deschamps A, Murkin JM (2007) A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin Cardiothorac Vasc Anesth 11(4):274–281

    PubMed  Google Scholar 

  27. Denault A, Ali MS, Couture EJ (2019) A practical approach to cerebro-somatic near-infrared spectroscopy and whole-body ultrasound. J Cardiothorac Vasc Anesth 33(Suppl. 1):S11–S37

    PubMed  Google Scholar 

  28. Dent CL, Spaeth JP, Jones BV, Schwartz SM, Glauser TA, Hallinan B, Pearl JM, Khoury PR, Kurth CD (2005) Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 131(1):190–197

    Google Scholar 

  29. Deschamps A, Hall R, Grocott H et al (2016) Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery: a randomized controlled feasibility trial. Anesthesiology 124(4):826–836

    CAS  PubMed  Google Scholar 

  30. Disma N, O’Leary JD, Loepke AW, Brambrink AM, Becke K, Clausen NG, De Graaff JC, Liu F, Hansen TG, McCann ME, Salorio CF, Soriano S, Sun LS, Szmuk P, Warner DO, Vutskits L, Davidson AJ (2018) Anesthesia and the developing brain: a way forward for laboratory and clinical research. Paediatr Anaesth 28(9):758–763

    PubMed  Google Scholar 

  31. Dix LM, van Bel F, Lemmers PM (2017) Monitoring cerebral oxygenation in neonates: an update. Front Pediatr 14(5):46

    Google Scholar 

  32. Escourrou G, Renesme L, Zana E, Rideau A, Marcoux MO, Lopez E, Gascoin G, Kuhn P, Tourneux P, Guellec I, Flamant C (2017) How to assess hemodynamic status in very preterm newborns in the first week of life? J Perinatol 37(9):987–993

    CAS  PubMed  Google Scholar 

  33. Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, Borger M, Mohr FW (2013) Near-infrared spectroscopy monitoring oft he collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg 46(6):651–656

    CAS  PubMed  Google Scholar 

  34. Etz CD, Luehr M, Aspern KV et al (2014) Spinal cord ischemia in open and endovascular thoracoabdominal aortic aneurysm repair: new concepts. J Cardiovasc Surg 55(2 Suppl 1):159–168

    CAS  Google Scholar 

  35. Evans KM, Rubarth LB (2017) Investigating the Role of Near-Infrared Spectroscopy in Neonatal Medicine. Neonatal Netw 36(4):189–195. https://doi.org/10.1891/0730-0832.36.4.189

    Article  PubMed  Google Scholar 

  36. Garvey AA, Kooi EMW, Smith A, Dempsey EM (2018) Interpretation of cerebral oxygenation changes in the preterm infant. Children. https://doi.org/10.3390/children5070094

    Article  PubMed  PubMed Central  Google Scholar 

  37. Garvey AA, Dempsey EM (2018) Applications of near infrared spectroscopy in the neonate. Curr Opin Pediatr 30(2):209–215. https://doi.org/10.1097/MOP.0000000000000599

    Article  PubMed  Google Scholar 

  38. Graham MR (2017) Clinical update regarding general anesthesia-associated neurotoxicity in infants and children. Curr Opin Anaesthesiol 30(6):682–687. https://doi.org/10.1097/ACO.0000000000000520

    Article  PubMed  Google Scholar 

  39. Guay J, Kopp S (2013) Cerebral monitors versus regional anesthesia to detect cerebral ischemia in patients undergoing carotid endarterectomy: a metaanalysis. Can J Anaesthesiol 60(3):266–279

    Google Scholar 

  40. Gumulak R, Lucanova LC, Zibolen M (2017) Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 161(2):128–133

    PubMed  Google Scholar 

  41. Habre W, Disma N, Virag K, Becke K, Hansen TG, Jöhr M, Leva B, Morton NS, Vermeulen PM, Zielinska M, Boda K, Veyckemans F, APRICOT Group of the European Society of Anaesthesiology Clinical Trial Network (2017) Incidence of severe critical events in paediatric anaesthesia (APRICOT): a prospective multicentre observational study in261 hospitals in Europe. Lancet Respir Med 5(5):412–425. https://doi.org/10.1016/S2213-2600(17)30116-9

    Article  PubMed  Google Scholar 

  42. Hansen TG (2014) Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth 25(1):65–72. https://doi.org/10.1111/pan.12548

    Article  PubMed  Google Scholar 

  43. Harvey RE (2018) Neurological outcomes and neuromonitoring in cardiac surgery. Int Anesthesiol Clin 56(4):21–46

    PubMed  Google Scholar 

  44. Heringlake M, Garbers C, Kabler JH et al (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114(1):58–69

    PubMed  Google Scholar 

  45. Hickok RL, Spaeder MC, Berger JT, Schuette JJ, Klugman D (2016) Postoperative abdominal NIRS values predict low cardiac output syndrome in neonates. World J Pediatr Congenit Heart Surg 7(2):180–184. https://doi.org/10.1177/2150135115618939

    Article  PubMed  Google Scholar 

  46. Hoffman GM, Ghanayem NS, Scott JP, Tweddell JS, Mitchell ME, Mussatto KA (2017) Postoperative cerebral and somatic near-infrared spectroscopy saturations and outcome in hypoplastic left heart syndrome. Ann Thorac Surg 103(5):1527–1535. https://doi.org/10.1016/j.athoracsur.2016.09.100

    Article  PubMed  Google Scholar 

  47. Hood R, Budd A, Sorond FA et al (2018) Peri-operative neurological complications. Anaesthesia 73(Suppl. 1):67–75. https://doi.org/10.1111/anae.14142

    Article  PubMed  Google Scholar 

  48. Hori D, Brown C, Ono M, Rappold T, Sieber F, Gottschalk A, Neufeld KJ, Gottesman R, Adachi H, Hogue CW (2014) Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth 113(6):1009–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou X, Ding H, Teng Y, Zhou C, Tang X, Li S, Ding H (2007) Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy. Physiol Meas 28(10):1251–1265

    PubMed  Google Scholar 

  50. Hyttel-Sorensen S, Greisen G, Als-Nielsen B, Gluud C (2017) Cerebral near-infrared spectroscopy monitoring for prevention of brain injury in very preterm infants. Cochrane Database Syst Rev 4(9):CD11506. https://doi.org/10.1002/14651858.CD011506.pub2

    Article  Google Scholar 

  51. Jevtovic-Todorovic V, Brambrick A (2018) General anesthesia and young brain: what is new? J Neurosurg Anesthesiol 30(3):217–222. https://doi.org/10.1097/ANA.0000000000000432

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jöbsis F (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267

    PubMed  Google Scholar 

  53. Kurth CD, McCann JC, Wu J, Miles L, Loepke AW (2009) Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets. Anesth Analg 108(4):1268–1277. https://doi.org/10.1213/ane.0b013e318196ac8e

    Article  PubMed  Google Scholar 

  54. La Cour A, Greisen G, Hyttel-Sorensen S (2018) In vivo validation of cerebral near-infrared spectroscopy: a review. Neurophoton 5(4):40901. https://doi.org/10.1117/1.NPh.5.4.040901

    Article  CAS  Google Scholar 

  55. Lansman SL, Hagl C, Fink D (2002) Acute type B aortic dissection: surgical therapy. Ann Thorac Surg 74:1833–1835

    Google Scholar 

  56. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy G, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Bösel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O’Phelan K, Provencio JJ, Puppo C, Riker R, Roberson C, Schmidt M, Taccone F (2014) The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: evidentiary tables: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 21(Suppl 2):S297–361. https://doi.org/10.1007/s12028-014-0081-x

    Article  PubMed  Google Scholar 

  57. Lee JK, Yang ZJ, Wang B, Larson AC, Jamrogowicz JL, Kulikowicz E, Kibler KK, Mytar JO, Carter EL, Burman HT, Brady KM, Smielewski P, Czosnyka M, Koehler RC, Shaffner DH (2012) Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest. Anesth Analg 114(4):825–836. https://doi.org/10.1213/ANE.0b013e31824762d5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lei L, Katznelson R, Fedorko L et al (2017) Cerebral oximetry and postoperative delirium after cardiac surgery: a randomised, controlled trial. Anaesthesia 72(12):1456–1466

    CAS  PubMed  Google Scholar 

  59. Lewis C, Parulkar SD, Bebawy J et al (2018) Cerebral neuromonitoring during cardiac surgery: a critical appraisal with an emphasis on near-infrared spectroscopy. J Cardiothorac Vasc Anesth 32(5):2313–2322

    PubMed  Google Scholar 

  60. López SPL, Zuazo Ojeda A, Jimenez Gómez G, Benavente Fernández I (2018) Monitoring of blood pressure is not enough to avoid neonatal postoperative encephalopathy. AJP Rep 8(3):e192–e194

    Google Scholar 

  61. Mahal I, Davie SN, Grocott HP (2014) Cerebral oximetry and thoracic surgery. Curr Opin Anesthesiol 27(1):21–27

    CAS  Google Scholar 

  62. Mauermann WJ, Crepeau AZ, Pulido JN et al (2013) Comparison of electroencaphalography and cerebral oximetry to determine the need for in-line arterial shunting in patients undergoing carotid endarterectomy. J Cardiothorac Vasc Anesth 27(6):1253–1259

    PubMed  Google Scholar 

  63. McCann ME, Schouten AN, Dobija N, Munoz C, Stephenson L, Poussaint TY, Kalkman CJ, Hickey PR, de Vries LS, Tasker RC (2014) Infantile postoperative encephalopathy: perioperative factors as a cause for concern. Pediatrics 133(3):e751–e757

    PubMed  Google Scholar 

  64. McCann ME, Schouten ANJ (2014) Beyond survival; influences of blood pressure, cerebral perfusion and anesthesia on neurodevelopment. Pediatr Anesth 24(1):68–73

    Google Scholar 

  65. McCann ME, de Graaff JC, Dorris L, Disma N, Withington D, Bell G, Grobler A, Stargatt R, Hunt RW, Sheppard SJ, Marmor J, Giribaldi G, Bellinger DC, Hartmann PL, Hardy P, Frawley G, Izzo F, von Ungern Sternberg BS, Lynn A, Wilton N, Mueller M, Polaner DM, Absalom AR, Szmuk P, Morton N, Berde C, Soriano S, Davidson AJ, Consortium GAS (2019) Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 393(10172):664–677. https://doi.org/10.1016/S0140-6736(18)32485-1

    Article  PubMed  PubMed Central  Google Scholar 

  66. Meng L, Cannesson M, Alexander BS et al (2011) Effect of phenylephrine and ephedrine bolus treatment on cerebral oxygenation in anaesthetized patients. Br J Anaesth 107:209–217

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Michelet D, Arslan O, Hilly J, Mangalsuren N, Brasher C, Grace R, Bonnard A, Malbezin S, Nivoche Y, Dahmani S (2015) Intraoperative changes in blood pressure associated with cerebral desaturation in infants. Paediatr Anaesth 25(7):681–688

    PubMed  Google Scholar 

  68. Milan A, Freato F, Vanzo V, Chiandetti L, Zaramella P (2009) Influence of ventilation mode on neonatal cerebral blood flow and volume. Early Hum Dev 85(7):415–419. https://doi.org/10.1016/j.earlhumdev.2009.01.008

    Article  PubMed  Google Scholar 

  69. Moerman A, Vandenplas G, Bové T, De Wouters PF, Hert SG (2013) Relation between mixed venous oxygen saturation and cerebral oxygen saturation measured by absolute and relative near-infrared spectroscopy during off-pump coronary artery bypass grafting. Br J Anaesth 110:258–265

    CAS  PubMed  Google Scholar 

  70. Moerman A, De Hert S (2015) Cerebral oximetry: the standard monitor of the future? Curr Opin Anaesthesiol 28(6):703–709

    CAS  PubMed  Google Scholar 

  71. Moerman A, De Hert S (2017) Recent advances in cerebral oxymetry. Assesment of cerebral autoregulation with near-infrared spectroscopy: myth or reality? F1000Res 6:1615. https://doi.org/10.12688/f1000research.11351.1

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moerman A, De Hert S (2019) Why and how to assess cerebral autoregulation? Best Pract Res Clin Anaesthesiol 33(2):211–220

    PubMed  Google Scholar 

  73. Mohandas BS, Jagadeesh AM, Vikram SB (2013) Impact of monitoring cerebral oxygen saturation on the outcome of patients undergoing open heart surgery. Ann Card Anaesth 16(2):102–106

    CAS  PubMed  Google Scholar 

  74. Moritz S, Kasprzak P, Arlt M, Taeger K, Metz C (2007) Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial Doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 107(4):563–569

    PubMed  Google Scholar 

  75. Nishiyama K, Ito N, Orita T, Hayashida K, Arimoto H, Beppu S, Abe M, Unoki T, Endo T, Murai A, Hatada T, Yamada N, Mizobuchi M, Himeno H, Okuchi K, Yasuda H, Mochizuki T, Shiga K, Kikuchi M, Tsujimura Y, Hatanaka T, Nagao K (2015) Regional cerebral oxygen saturation monitoring for predicting interventional outcomes in patients following out-of-hospital cardiac arrest of presumed cardiac cause: A prospective, observational, multicentre study. Resuscitation 96:135–141. https://doi.org/10.1016/j.resuscitation.2015.07.049

    Article  PubMed  Google Scholar 

  76. Olbrecht VA, Skowno J, Marchesini V, Ding L, Jiang Y, Ward CG, Yu G, Liu H, Schurink B, Vutskits L, de Graaff JC, McGowan FX Jr, von Ungern-Sternberg BS, Kurth CD, Davidson A (2018) An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology 128(1):85–96. https://doi.org/10.1097/ALN.0000000000001920

    Article  PubMed  Google Scholar 

  77. Olubukola ON, Voepel-Lewis T, Morris M, Chimbira WT, Malviya S, Reynolds PI, Tremper KK (2009) How do pediatric anesthesiologists define intraoperative hypotension? Pediatr Anesth 19(11):1048–1053

    Google Scholar 

  78. Ono M, Brady K, Easley RB, Brown C, Kraut M, Gottesman RF, Hogue CW Jr (2013) Duration and magnitude of blood pressure below cerebral autoregulation threshold during cardiopulmonary bypass is associated with major morbidity and operative mortality. J Thorac Cardiovasc Surg 147(1):483–489

    PubMed  Google Scholar 

  79. Osharina V, Aarabi A, Manoochehri M, Mahmoudzadeh M, Wallois F (2017) Hemodynamic changes associated with interictal spikes induced by acute models of focal epilepsy in rats: a simultaneous electrocorticography and near-infrared spectroscopy study. Brain Topogr 30(3):390–407. https://doi.org/10.1007/s10548-016-0541-z

    Article  PubMed  Google Scholar 

  80. Paarmann H, Heringlake M, Heinze H et al (2012) Non-invasive cerebral oxygenation reflects mixed venous oxygen saturation during the varying haemodynamic conditions in patients undergoing transapical transcatheter aortic valve implantation. Interact CardioVasc Thorac Surg 3:268–272

    Google Scholar 

  81. Pappas A, Shankaran S, Laptook AR et al (2011) Hypocarbia and adverse outcome in hypoxic-ischemic encepahlopathy. J Pediatr 158(5):752–758

    PubMed  Google Scholar 

  82. Pedersen T, Nicholson A, Hovhannisyan K, Møller AM, Smith AF, Lewis SR (2014) Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev 17(3):CD2013. https://doi.org/10.1002/14651858.CD002013.pub3

    Article  Google Scholar 

  83. Pennekamp CW, Bots ML, Kappelle LJ, Moll FL, de Borst GJ (2009) The value of near-infrared spectroscopy measured cerebraloximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38(5):539–545

    CAS  PubMed  Google Scholar 

  84. Pennekamp CW, Immink RV, den Ruijter HM et al (2013) Near-Infrared Spectroscopy to indicate selective shunt use during carotid endarterectomy. Eur J Vasc Endovas Surg 46(4):397–403

    CAS  Google Scholar 

  85. Pennekamp CW, Immink RV, den Ruijter HM, Kappelle LJ, Ferrier CM, Bots ML, Buhre WF, Moll FL, de Borst GJ (2012) Near-infrared spectroscopy can predict the onset of cerebral hyperperfusion syndrome after carotid endarterectomy. Cerebrovasc Dis 34(4):314–321

    CAS  PubMed  Google Scholar 

  86. Pichler G, Schmölzer GM, Urlesberger B (2017) Cerebral Tissue Oxygenation during Immediate Neonatal Transition and Resuscitation. Front Pediatr 5:29

    PubMed  PubMed Central  Google Scholar 

  87. Plomgaard AM, Alderliesten T, van Bel F, Benders M, Claris O, Cordeiro M, Dempsey E, Fumagalli M, Gluud C, Hyttel-Sorensen S, Lemmers P, Pellicer A, Pichler G, Greisen G (2019) No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC II) in preterm infants during the first days of life. Acta Paediatr 108(2):275–281. https://doi.org/10.1111/apa.14463

    Article  PubMed  Google Scholar 

  88. Reed EH (2018) Neurological outcomes and neuromonitoring in cardiac surgery. Int Anesthesiol Clin 56(4):21–46

    Google Scholar 

  89. Rhee CJ, Kibler KK, Easley RB, Andropoulos DB, Czosnyka M, Smielewski P, Brady KM (2012) Renovascular reactivity measured by near-infrared spectroscopy. J Appl Physiol 113(2):307–314. https://doi.org/10.1152/japplphysiol.00024.2012

    Article  PubMed  Google Scholar 

  90. Rhondali O, André C, Pouyau A, Mahr A, Juhel S, De Queiroz M, Rhzioual-Berrada K, Mathews S, Chassard D (2015) Sevoflurane anesthesia and brain perfusion. Paediatr Anaesth 25(2):180–185. https://doi.org/10.1111/pan.12512

    Article  PubMed  Google Scholar 

  91. Ringer SK, Clausen NG, Spielmann N, Weiss M (2019) Effects of moderate and severe hypocapnia on intracerebral perfusion and brain tissue oxygenation in piglets. Paediatr Anaesth 29(11):1114–1121. https://doi.org/10.1111/pan.13736

    Article  PubMed  Google Scholar 

  92. Ringer SK, Ohlerth S, Carrera I, Mauch J, Spielmann N, Bettschart-Wolfensberger R, Weiss M (2016) Effects of hypotension and/or hypocapnia during sevoflurane anesthesia on perfusion and metabolites in the developing brain of piglets—a blinded randomized study. Paediatr Anaesth 26(9):909–918. https://doi.org/10.1111/pan.12956

    Article  PubMed  Google Scholar 

  93. Rivera-Lara L, Zorrilla-Vaca A, Geocadin RG, Healy RJ, Ziai W, Mirski MA (2017) Cerebral autoregulation-oriented therapy at the bedside: a comprehensive review. Anesthesiology 126(6):1187–1199

    PubMed  Google Scholar 

  94. Rivzi AZ, Sullivan TM (2010) Incidence, prevention, and management in spinal cord protection during TEVAR. J Vasc Surg 52(4):86–90

    Google Scholar 

  95. Rogers CA, Stoica S, Ellis L et al (2017) Randomized trial of near-infrared spectroscopy for personalized optimization of cerebral tissue oxygenation during cardiac surgery. Br J Anaesth 119(3):384–393

    CAS  PubMed  Google Scholar 

  96. Rosenblatt K, Walker KA, Goodson C, Olsen E, Maher D, Brown CH, Nyquist P (2019) Cerebral autoregulation-guided optimal blood pressure in sepsis-associated encephalopathy: a case series. J Intensive Care Med. https://doi.org/10.1177/0885066619828293

    Article  PubMed  Google Scholar 

  97. Sanfilippo F, Serena G, Corredor C, Benedetto U, Maybauer MO, Al-Subaie N, Madden B, Oddo M, Cecconi M (2015) Cerebral oximetry and return of spontaneous circulation after cardiac arrest: a systematic review and meta-analysis. Resuscitation 94:67–72. https://doi.org/10.1016/j.resuscitation.2015.06.023

    Article  PubMed  Google Scholar 

  98. Scheeren TWL, Kuizenga MH, Maurer H, Struys MMRF, Heringlake M (2019) Electroencephalography and brain oxygenation monitoring in the perioperative period. Anesth Analg 128(2):265–277

    PubMed  Google Scholar 

  99. Schmidt C, Heringlake M, Kellner P et al (2018) The effects of systemic oxygenation on cerebral oxygen saturation and its relationship to mixed venous oxygen saturation: a prospective observational study comparison of the INVOS and foresight elite cerebral oximeters. Can J Anesth 201(8):766–775

    Google Scholar 

  100. Schneider A, Minnich B, Hofstätter E, Weisser C, Hattinger-Jürgenssen E, Wald M (2014) Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants. Acta Paediatr 103(9):934–938. https://doi.org/10.1111/apa.12698

    Article  CAS  PubMed  Google Scholar 

  101. Schön J, Paarmann H, Heringlake M (2012) Zerebrale Oxymetrie. Klinischer Stellenwert bei kardiochirurgischen Patienten. Anaesthesist 61(11):934–940. https://doi.org/10.1007/s00101-012-2066-5

    Article  CAS  PubMed  Google Scholar 

  102. Scott JP, Hoffman GM (2014) Near-infrared spectroscopy: exposing the dark (venous) side of the circulation. Paediatr Anaesth 24(1):74–88. https://doi.org/10.1111/pan.12301

    Article  PubMed  Google Scholar 

  103. Serraino GF, Murphy GJ (2017) Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: a systematic review of randomised trials. BMJ Open 7(9):e16613. https://doi.org/10.1136/bmjopen-2017-016613

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sinner B, Becke K, Engelhard K (2014) General anaesthetics and the developing brain: an overview. Anaesthesia 69(9):1009–1022. https://doi.org/10.1111/anae.12637

    Article  CAS  PubMed  Google Scholar 

  105. Slater JP, Guarino T, Stack J, Vinod K, Bustami RT, Brown JM 3rd, Rodriguez AL, Magovern CJ, Zaubler T, Freundlich K, Parr GV (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87(1):36–44. https://doi.org/10.1016/j.athoracsur.2008.08.070 (discussion 44–5)

    Article  PubMed  Google Scholar 

  106. Söhle M et al (2014) Neuromonitoring in der Kardioanästhesie. Eine gemeinsame Stellungnahme der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI), Cardiovascular and Thoracic Anaesthesia Group (CTA) der Schweizerischen Gesellschaft für Anästhesiologie und Reanimation (SGAR), Deutschen Gesellschaft für Thorax. Herz- und Gefäßchirurgie (DGTHG). Anasth Intensivmed 55:521–538

    Google Scholar 

  107. Sood BG, McLaughlin K, Cortez J (2015) Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med 20(3):164–172. https://doi.org/10.1016/j.siny.2015.03.008

    Article  PubMed  Google Scholar 

  108. St Peter D, Gandy C, Hoffman SB (2017) Hypotension and adverse outcomes in prematurity: comparing definitions. Neonatology 111(3):228–233. https://doi.org/10.1159/000452616

    Article  PubMed  Google Scholar 

  109. Stenson B, Brocklehurst P, Tarnow-Mordi W (2011) Increased 36-week survival with high oxygen saturation target in extremely preterm infants. N Engl J Med 364(17):1680–1682. https://doi.org/10.1056/NEJMc1101319 (U.K. BOOST II trial; Australian BOOST II trial; New Zealand BOOST II trial)

    Article  CAS  PubMed  Google Scholar 

  110. Stolwijk LJ, van der Zee DC, Tytgat S, van der Werff D, Benders MJNL, van Herwaarden MYA, Lemmers PMA (2017) Brain oxygenation during thoracoscopic repair of long gap esophageal atresia. World J Surg 41(5):1384–1392. https://doi.org/10.1007/s00268-016-3853-y

    Article  PubMed  PubMed Central  Google Scholar 

  111. Suemori T, Skowno J, Horton S, Bottrell S, Butt W, Davidson AJ (2016) Cerebral oxygen saturation and tissue hemoglobin concentration as predictive markers of early postoperative outcomes after pediatric cardiac surgery. Paediatr Anaesth 26(2):182–189

    PubMed  Google Scholar 

  112. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A, Poole WK, Schibler K, Newman NS, Ambalavanan N, Frantz ID 3rd, Piazza AJ, Sánchez PJ, Morris BH, Laroia N, Phelps DL, Poindexter BB, Cotten CM, Van Meurs KP, Duara S, Narendran V, Sood BG, O’Shea TM, Bell EF, Ehrenkranz RA, Watterberg KL, Higgins RD (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362(21):1959–1969. https://doi.org/10.1056/NEJMoa0911781

    Article  PubMed Central  Google Scholar 

  113. Thewissen L, Caicedo A, Lemmers P, Van Bel F, Van Huffel S, Naulaers G (2018) Measuring near-infrared spectroscopy derived cerebral autoregulation in neonates: from research tool toward bedside multimodal monitoring. Front Pediatr 14(6):117. https://doi.org/10.3389/fped.2018.00117

    Article  Google Scholar 

  114. Thudium M, Ellerkmann RK, Heinze I, Hilbert T (2019) Relative cerebral hyperperfusion during cardiopulmonary bypass is associated with risk for postoperative delirium: a cross-sectional cohort study. BMC Anesthesiol 19(1):35. https://doi.org/10.1186/s12871-019-0705-y

    Article  PubMed  PubMed Central  Google Scholar 

  115. Toet MC, Lemmers PM, van Schelven LJ, van Bel F (2006) Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 117:333–339

    PubMed  Google Scholar 

  116. Tsai HI, Chung PC, Lee CW, Yu HP (2016) Cerebral perfusion monitoring in acute care surgery: current and perspective use. Expert Rev Med Devices 13(9):865–875. https://doi.org/10.1080/17434440.2016.1219655

    Article  CAS  PubMed  Google Scholar 

  117. Turner NM (2015) Intraoperative hypotension in neonates: when and how should we intervene? Curr Opin Anaesthesiol 28(3):308–313

    PubMed  Google Scholar 

  118. Tytgat SH, van Herwaarden MY, Stolwijk LJ, Keunen K, Benders MJ, de Graaff JC, Milstein DM, van der Zee DC, Lemmers PM (2016) Neonatal brain oxygenation during thoracoscopic correction of esophageal atresia. Surg Endosc 30(7):2811–2817. https://doi.org/10.1007/s00464-015-4559-1

    Article  PubMed  Google Scholar 

  119. Ullery BW, Cheung AT, Fairman RM, Jackson BM, Woo EY, Bavaria J, Pochettino A, Wang GJ (2011) Risk factors, outcomes, and clinical manifestations of spinal cord ischemia following thoracic endovascular aortic repair. J Vasc Surg 54(3):677–684

    PubMed  Google Scholar 

  120. van Hoften JC, Verhagen EA, Keating P, ter Horst HJ, Bos AF (2010) Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch Dis Child Fetal Neonatal Ed 95(5):F352–F358

    PubMed  Google Scholar 

  121. Verhagen EA, Van Braeckel KNJA, Van der Veere CN, Groen H, Dijk PH, Hulzebos CV, Bos AF (2015) Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Dev Med Child Neurol 57(5):449–455. https://doi.org/10.1111/dmcn.12622

    Article  PubMed  Google Scholar 

  122. Von Aspern K, Haunschild J, Hoyer A, Luehr M, Bakhtiary F, Misfeld M, Mohr FW, Etz CD (2016) Non-invasive spinal cord oxygenation monitoring: validating collateral network near-infrared spectroscopy for thoracoabdominal aortic aneurysm repair. Eur J Cardiothorac Surg 50(4):675–683

    PubMed  Google Scholar 

  123. Weber F, Scoones GP (2019) A practical approach to cerebral near-infrared spectroscopy (NIRS) directed hemodynamic management in noncardiac pediatric anesthesia. Paediatr Anaesth 29(10):993–1001. https://doi.org/10.1111/pan.13726

    Article  PubMed  Google Scholar 

  124. Weiss M, Vutskits L, Hansen TG, Engelhardt T (2015) Safe anesthesia for every tot—the SAFETOTS initiative. Curr Opin Anaesthesiol 28(3):302–307

    CAS  PubMed  Google Scholar 

  125. Yamamoto K, Miyata T, Nagawa H (2007) Good correlation between cerebral oxygenation measured using near infrared spectroscopy and stump pressure during carotid clamping. Int Angiol 26(3):262–265

    CAS  PubMed  Google Scholar 

  126. Yoshitani K, Kawaguchi M, Ishida K, Maekawa K, Miyawaki H, Tanaka S, Uchino H, Kakinohana M, Koide Y, Yokota M, Okamoto H, Nomura M (2019) Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA). J Anesth 33(2):167–196. https://doi.org/10.1007/s00540-019-02610-y

    Article  Google Scholar 

  127. Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R (2018) Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev 17(1):CD10947. https://doi.org/10.1002/14651858.CD010947.pub2

    Article  Google Scholar 

  128. Zorrilla-Vaca A, Healy R, Grant MC et al (2018) Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials. Can J Anaesth 65(5):529–542. https://doi.org/10.1007/s12630-018-1065-7

    Article  PubMed  Google Scholar 

  129. Zulueta JL, Vida VL, Perisinotto E, Pittarello D, Stellin G (2013) Role of intraoperative regional oxygen saturation using near infrared spectroscopy in the prediction of low output syndrome after pediatric heart surgery. J Card Surg 28(4):446–452. https://doi.org/10.1111/jocs.12122

    Article  PubMed  Google Scholar 

  130. Schön J, Heringlake M, Berger KU, Volker Groesdonk H, Sedemund-Adib B, Paarmann H (2011) Relationship between mixed venous oxygen saturation and regional cerebral oxygenation in awake. spontaneously breathing cardiac surgery patients. Minerva Anestesiol 2011(77):952–958

    Google Scholar 

Weiterführende Literatur

  1. Kooi EMW, Verhagen EA, Elting JWJ, Czosnyka M, Austin T, Wong FY, Aries MJH (2017) Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother 17(8):801–818

    CAS  PubMed  Google Scholar 

  2. Schoen J, Meyerrose J, Paarmann H et al (2011) Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit Care 15:R218. https://doi.org/10.1186/cc10454

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bolkenius.

Ethics declarations

Interessenkonflikt

D. Bolkenius, C. Dumps und B. Rupprecht geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolkenius, D., Dumps, C. & Rupprecht, B. Nahinfrarotspektroskopie. Anaesthesist 70, 190–203 (2021). https://doi.org/10.1007/s00101-020-00837-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-020-00837-z

Schlüsselwörter

Keywords

Navigation