Skip to main content
Log in

Vermeidung von Komplikationen im Umgang mit zentralen Venenkathetern bei Kindern

Avoidance of complications when dealing with central venous catheters in the treatment of children

  • Allgemeinanästhesie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Zentrale Venenkatheter (ZVK) sind bei der Behandlung von Kindern ein wichtiges Hilfsmittel. Die Einlage eines Katheters kann verschiedene Komplikationen verursachen, welche von der Art des Katheters, der Punktionstechnik und dem Punktionsort beeinflusst werden. Es existieren verschiedene Maßnahmen, die dazu beitragen, diese Risiken zu minimieren. Um die Komplikationsrate im Umgang mit ZVK möglichst gering zu halten, ist eine auf den Patienten fokussierte Risiko-Nutzen-Analyse vor jeder Einlage unabdingbar. Die Art des verwendeten ZVK (zum Beispiel tunnelierte Katheter gegenüber nichttunnelierten Kathetern) beeinflusst die Rate an katheterassoziierten Infektionen und den Patientenkomfort maßgeblich. Die Wahl des Punktionsortes wird beeinflusst von der geplanten Liegedauer, dem Patientengewicht und dem Zweck des ZVK. Dabei ist der Zugang über die Vena jugularis interna ein häufig gewählter Punktionsort, da die Rate an Komplikationen bei der Einlage geringer ist. Bei längerer Liegedauer und bei sehr kleinen Kindern scheint die Vena subclavia geeigneter zu sein. Der korrekten Lagerung kommt bei der Einlage eine überragende Bedeutung zu. Dabei sollte die Einlage wenn immer möglich ultraschallgesteuert erfolgen. Die Lage des ZVK sollte immer radiographisch, gegebenenfalls sonographisch oder mittels EKG-Ableitung kontrolliert werden, um Fehllagen mit potenziell schwerwiegenden Konsequenzen sicher ausschließen zu können. Die im jeweiligen Krankenhaus etablierten Hygienerichtlinien müssen jederzeit strikt eingehalten werden, und das Personal muss im Umgang mit ZVK regelmäßig geschult werden (Ärzte, Pflege und Patienten).

Abstract

Central venous catheters (CVCs) are an important tool in the treatment of children. The insertion of a catheter may result in different complications depending of the type of catheter, the technique used for the insertion and the location. There are various techniques to reduce the risk of complications. In order to reduce the rate of complications of CVCs it is indispensable to perform a risk-benefit analysis for the individual patient before every insertion. The type of catheter used (for example tunneled catheters versus not-tunneled catheters) influences the rate of catheter-associated infections and the comfort of the patient significantly. The choice of the location is influenced by the expected indwelling time, the weight of the patient and the purpose of the CVC. Insertion via the vena jugularis interna is often chosen because of the reduced rate of complications during insertion. When the planned indwelling time of the catheter is longer or the child is fairly small the vena subclavia appears to be more appropriate. It is of utmost importance that the patient is positioned properly before insertion. Whenever possible the insertion should be performed with the help of ultrasound. The positioning of the catheter should be verified radiographically, possibly sonographically or with an ECG in order to avoid misplacement with potentially severe sequelae. The locally established hygienic guidelines should be strictly adhered to and everyone handling CVCs (doctors, nurses and patients) should have regular training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adler A, Yaniv I, Steinberg R et al (2006) Infectious complications of implantable ports and Hickman catheters in paediatric haematology-oncology patients. J Hosp Infect 62:358–365

    Article  CAS  PubMed  Google Scholar 

  2. Andropoulos DB, Bent ST, Skjonsby B, Stayer SA (2001) The optimal length of insertion of central venous catheters for pediatric patients. Anesth Analg 93:883–886

    Article  CAS  PubMed  Google Scholar 

  3. Arai T, Matsuda Y, Koizuka K, Yasuoka A (2009) Rotation of the head might not be recommended for internal jugular puncture in infants and children. Paediatr Anaesth 19:844–847

    Article  PubMed  Google Scholar 

  4. Araujo CC, Lima MC, Falbo GH (2007) Percutaneous subclavian central venous catheterization in children and adolescents: success, complications and related factors. J Pediatr (Rio J) 83:64–70

    Google Scholar 

  5. Blot SI, Depuydt P, Annemans L et al (2005) Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 41:1591–1598

    Article  PubMed  Google Scholar 

  6. Bowen JR, Callander I, Richards R, Lindrea KB (2016) Decreasing infection in neonatal intensive care units through quality improvement. Arch Dis Child Fetal Neonatal Ed. doi:10.1136/archdischild-2015-310165

    PubMed  Google Scholar 

  7. Breschan C, Platzer M, Jost R et al (2007) Comparison of catheter-related infection and tip colonization between internal jugular and subclavian central venous catheters in surgical neonates. Anesthesiology 107:946–953

    Article  PubMed  Google Scholar 

  8. Breschan C, Platzer M, Jost R et al (2011) Consecutive, prospective case series of a new method for ultrasound-guided supraclavicular approach to the brachiocephalic vein in children. Br J Anaesth 106:732–737

    Article  CAS  PubMed  Google Scholar 

  9. Breschan C, Platzer M, Likar R (2009) Zentrale Venenkatheter bei Neugeborenen, Säuglingen und Kindern. Anaesthesist 58:897

    Article  CAS  PubMed  Google Scholar 

  10. Bruzoni M, Slater BJ, Wall J et al (2013) A prospective randomized trial of ultrasound- vs landmark-guided central venous access in the pediatric population. J Am Coll Surg 216:939–943

    Article  PubMed  Google Scholar 

  11. Byon H‑J, Lee G‑W, Lee J‑H et al (2013) Comparison between ultrasound-guided supraclavicular and infraclavicular approaches for subclavian venous catheterization in children – a randomized trial. Br J Anaesth 111:788–792

    Article  PubMed  Google Scholar 

  12. Cesaro S, Cavaliere M, Pegoraro A et al (2016) A comprehensive approach to the prevention of central venous catheter complications: Results of 10-year prospective surveillance in pediatric hematology-oncology patients. Ann Hematol 95:817–825

    Article  PubMed  Google Scholar 

  13. Chesshyre E, Carapetis J, Goff Z, Bowen A (2015) The prevention, diagnosis and management of central venous line infections in children. J Infect 71(Suppl 1):59–75

    Article  Google Scholar 

  14. Costello JM, Clapper TC, Wypij D (2013) Minimizing complications associated with Percutaneous central venous catheter placement in children. Pediatr Crit Care Med 14:273

    Article  PubMed  Google Scholar 

  15. Dandoy CE, Hausfeld J, Flesch L et al (2016) Rapid cycle development of a multifactorial intervention achieved sustained reductions in central line-associated bloodstream infections in haematology oncology units at a children’s hospital: a time series analysis. BMJ Qual Saf 25:633–643. doi:10.1136/bmjqs-2015-004450

    Article  PubMed  Google Scholar 

  16. Delarbre B, Dabadie A, Stremler-Lebel N et al (2014) Introduction of the use of a pediatric PICC line in a French University Hospital: Review of the first 91 procedures. Diagn Interv Imaging 95:277–281

    Article  CAS  PubMed  Google Scholar 

  17. Detaille T, Pirotte T, Veyckemans F (2010) Vascular access in the neonate. Best Pract Res Clin Anaesthesiol 24:403

    Article  PubMed  Google Scholar 

  18. Furtwängler R, Laux C, Graf N, Simon A (2015) Impact of a modified Broviac maintenance care bundle on bloodstream infections in paediatric cancer patients. GMS Hyg Infect Control 10:Doc15. doi:10.3205/dgkh000258

    PubMed  PubMed Central  Google Scholar 

  19. Gallagher RA, Levy J, Vieira RL et al (2014) Ultrasound assistance for central venous catheter placement in a pediatric emergency department improves placement success rates. Acad Emerg Med 21:981–986

    Article  PubMed  Google Scholar 

  20. Greenberg RG, Cochran KM, Smith PB et al (2015) Effect of catheter dwell time on risk of central line-associated bloodstream infection in infants. Pediatrics 136:1080–1086

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han SH, Kim SD, Kim CS et al (2004) Comparison of central venous catheterization sites in infants. J Int Med Res 32:563–569

    Article  CAS  PubMed  Google Scholar 

  22. Hind D, Calvert N, McWilliams R et al (2003) Ultrasonic locating devices for central venous cannulation: Meta-analysis. BMJ 327:361

    Article  PubMed  PubMed Central  Google Scholar 

  23. Inagawa G, Ka K, Tanaka Y et al (2007) The carina is not a landmark for central venous catheter placement in neonates. Paediatr Anaesth 17:968–971

    Article  PubMed  Google Scholar 

  24. Jain A, McNamara PJ, Ng E, El-Khuffash A (2011) The use of targeted neonatal echocardiography to confirm placement of peripherally inserted central catheters in neonates. Am J Perinatol 29:101–106

    PubMed  Google Scholar 

  25. Jöhr M, Berger TM (2015) Venous access in children: State of the art. Curr Opin Anaesthesiol 28:314–320

    Article  PubMed  Google Scholar 

  26. Karapinar B, Cura A (2007) Complications of central venous catheterization in critically ill children. Pediatr Int 49:593–599

    Article  PubMed  Google Scholar 

  27. Kayashima K (2015) Factors affecting survival in pediatric cardiac tamponade caused by central venous catheters. J Anesth 29:944–952

    Article  PubMed  Google Scholar 

  28. Keidan I, Ben-Menachem E, Berkenstadt H, Toren A (2015) A simple diagnostic test to confirm correct placement of dysfunctional central venous catheters before chemotherapy in children. J Pediatr Hematol Oncol 38:78–80

    Article  Google Scholar 

  29. Kim H, Jeong C‑H, Byon H‑J et al (2013) Predicting the optimal depth of left-sided central venous catheters in children. Anaesthesia 68:1033–1037

    Article  CAS  PubMed  Google Scholar 

  30. Latif RK, Bautista AF, Memon SB et al (2011) Teaching aseptic technique for central venous access under ultrasound guidance: A randomized trial comparing didactic training alone to didactic plus simulation-based training. Anesth Analg 114:626–633

    Article  PubMed  Google Scholar 

  31. Lau CSM, Chamberlain RS (2016) Ultrasound-guided central venous catheter placement increases success rates in pediatric patients: A meta-analysis. Pediatr Res 80:178–184. doi:10.1038/pr.2016.74

    Article  PubMed  Google Scholar 

  32. Levy I, Katz J, Solter E et al (2005) Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children. Pediatr Infect Dis J 24:676–679. doi:10.1097/01.inf.0000172934.98865.14

    Article  PubMed  Google Scholar 

  33. Mangum DS, Verma A, Weng C et al (2013) A comparison of central lines in pediatric oncology patients: Early removal and patient centered outcomes. Pediatr Blood Cancer 60:1890–1895

    Article  PubMed  Google Scholar 

  34. McLean TW, Fisher CJ, Snively BM, Chauvenet AR (2005) Central venous lines in children with lesser risk acute lymphoblastic leukemia: Optimal type and timing of placement. J Clin Oncol 23:3024–3029

    Article  PubMed  Google Scholar 

  35. Miller MR, Niedner MF, Huskins WC et al (2011) Reducing PICU central line-associated bloodstream infections: 3‑year results. Pediatrics 128:e1077–e1083

    Article  PubMed  Google Scholar 

  36. Milstone AM, Reich NG, Advani S et al (2013) Catheter dwell time and CLABSIs in neonates with PICCs: a multicenter cohort study. Pediatrics 132:e1609–e1615

    Article  PubMed  PubMed Central  Google Scholar 

  37. Molinari AC, Haupt R, Saracco P et al (2004) Urokinase for restoring patency of malfunctioning or blocked central venous catheters in children with hemato-oncological diseases. Support Care Cancer 12:840–843

    Article  PubMed  Google Scholar 

  38. Morita M, Sasano H, Azami T et al (2009) A novel skin-traction method is effective for real-time ultrasound-guided internal jugular vein catheterization in infants and neonates weighing less than 5 kilograms. Anesth Analg 109:754–759

    Article  PubMed  Google Scholar 

  39. Mumtaz H, Williams V, Hauer-Jensen M et al (2000) Central venous catheter placement in patients with disorders of hemostasis. Am J Surg 180:503

    Article  CAS  PubMed  Google Scholar 

  40. Na HS, Kim JT, Kim HS et al (2009) Practical anatomic landmarks for determining the insertion depth of central venous catheter in paediatric patients. Br J Anaesth 102:820–823

    Article  CAS  PubMed  Google Scholar 

  41. Nardi N, Wodey E, Laviolle B et al (2016) Effectiveness and complications of ultrasound-guided subclavian vein cannulation in children and neonates. Anaesth Crit Care Pain Med 35:209–213

    Article  PubMed  Google Scholar 

  42. Neto EPS, Grousson S, Duflo F et al (2014) Ultrasonographic anatomic variations of the major veins in paediatric patients. Br J Anaesth 112:879–884

    Article  Google Scholar 

  43. O’Grady NP, Alexander M, Burns LA et al (2011) Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 39:1–34

    Article  Google Scholar 

  44. Perin G, Scarpa M‑G (2014) Defining central venous line position in children: tips for the tip. J Vasc Access 16:77–86

    Article  PubMed  Google Scholar 

  45. Pinon M, Bezzio S, Tovo PA et al (2009) A prospective 7‑year survey on central venous catheter-related complications at a single pediatric hospital. Eur J Pediatr 168:1505–1512

    Article  CAS  PubMed  Google Scholar 

  46. Pirotte T, Veyckemans F (2007) Ultrasound-guided subclavian vein cannulation in infants and children: A novel approach. Br J Anaesth 98:509–514

    Article  CAS  PubMed  Google Scholar 

  47. Pittiruti M, Bertollo D, Briglia E et al (2012) The intracavitary ECG method for positioning the tip of central venous catheters: Results of an Italian multicenter study. J Vasc Access 13:357–365

    Article  PubMed  Google Scholar 

  48. Rey C, Alvarez F, De La Rua V et al (2009) Mechanical complications during central venous cannulations in pediatric patients. Intensive Care Med 35:1438–1443

    Article  PubMed  Google Scholar 

  49. Reyes JA, Habash ML, Taylor RP (2011) Femoral central venous catheters are not associated with higher rates of infection in the pediatric critical care population. Am J Infect Control 40:43–47

    Article  PubMed  Google Scholar 

  50. Rodriguez CJ, Bolanowski A, Patel K et al (2006) Classical positioning decreases the cross-sectional area of the subclavian vein. Am J Surg 192:135–137

    Article  PubMed  Google Scholar 

  51. Ruschulte H, Franke M, Gastmeier P et al (2009) Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: A randomized controlled trial. Ann Hematol 88:267–272. doi:10.1007/s00277-008-0568-7

    Article  CAS  PubMed  Google Scholar 

  52. Sadek M, Roger C, Bastide S et al (2016) The influence of arm positioning on ultrasonic visualization of the Subclavian vein: An anatomical ultrasound study in healthy volunteers. Anesth Analg 123:129–132

    Article  PubMed  Google Scholar 

  53. Scholtz AK, Monachino AM, Nishisaki A et al (2013) Central venous catheter dress rehearsals: Translating simulation training to patient care and outcomes. Simul Healthc 8:341–349

    Article  PubMed  Google Scholar 

  54. Seemann M, Zech N, Kieninger M et al (2014) Anlage eines zentralen Venenkatheters bei persistierender V. cava superior sinistra. Anaesthesist 63:231–233. doi:10.1007/s00101-014-2304-0

    Article  CAS  PubMed  Google Scholar 

  55. Shah PN, Kane D, Appukutty J (2013) Depth of central venous catheterization by intracardiac electrocardiogram in adults. Anesthesiol Pain Med 2:111–114

    Article  Google Scholar 

  56. Shime N, Hosokawa K, MacLaren G (2015) Ultrasound imaging reduces failure rates of Percutaneous central venous catheterization in children. Pediatr Crit Care Med 16:718–725

    Article  PubMed  Google Scholar 

  57. Sigaut S, Skhiri A, Stany I et al (2009) Ultrasound guided internal jugular vein access in children and infant: A meta-analysis of published studies. Paediatr Anaesth 19:1199–1206

    Article  PubMed  Google Scholar 

  58. Stroud A, Zalieckas J, Tan C et al (2014) Simple formulas to determine optimal subclavian central venous catheter tip placement in infants and children. J Pediatr Surg 49:1109–1112

    Article  PubMed  Google Scholar 

  59. Thyoka M, Haq I, Hosie G (2014) Supraventricular tachycardia precipitated by a peripherally inserted central catheter in an infant with gastroschisis. BMJ Case Rep 2014:bcr2013201203

    Article  PubMed  PubMed Central  Google Scholar 

  60. Trieschmann U, Kruessell M, Cate UTF, Sreeram N (2008) Central venous catheters in children and neonates (Part 3) – Access via the femoral vein. Images Paediatr Cardiol 10:1–9

    Google Scholar 

  61. Ullman AJ, Marsh N, Mihala G et al (2015) Complications of central venous access devices: A systematic review. Pediatrics 136:e1331–e1344

    Article  PubMed  Google Scholar 

  62. Verghese ST, McGill WA, Patel RI et al (1999) Ultrasound-guided internal jugular venous cannulation in infants: A prospective comparison with the traditional palpation method. Anesthesiology 91:71–77

    Article  CAS  PubMed  Google Scholar 

  63. Verghese ST, Nath A, Zenger D et al (2002) The effects of the simulated Valsalva maneuver, liver compression, and/or Trendelenburg position on the cross-sectional area of the internal jugular vein in infants and young children. Anesth Analg 94:250-254

  64. Vidal E, Sharathkumar A, Glover J, Faustino EVS (2014) Central venous catheter-related thrombosis and thromboprophylaxis in children: A systematic review and meta-analysis. J Thromb Haemost 12:1096–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Witthayapraphakorn L, Khositseth A, Jiraviwatana T et al (2012) Appropriate length and position of the central venous catheter insertion via right internal jugular vein in children. Indian Pediatr 50:749–752

    Article  PubMed  Google Scholar 

  66. Wylie MC, Graham DA, Potter-Bynoe G et al (2010) Risk factors for central line-associated bloodstream infection in pediatric intensive care units. Infect Control Hosp Epidemiol 31:1049–1056

    Article  PubMed  Google Scholar 

  67. Yoon SZ, Shin JH, Hahn S et al (2005) Usefulness of the carina as a radiographic landmark for central venous catheter placement in paediatric patients. Br J Anaesth 95:514–517

    Article  CAS  PubMed  Google Scholar 

  68. Yoon SZ, Shin TJ, Kim HS et al (2006) Depth of a central venous catheter tip: Length of insertion guideline for pediatric patients. Acta Anaesthesiol Scand 50:355–357

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Herrn Prof. Dr. med. F.J. Frei für seinen Beitrag durch kritische Diskussionen des Themas mit den Autoren und Herrn Dr. med. J. Moll für die Anfertigung der Fotografien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aprili.

Ethics declarations

Interessenkonflikt

D. Aprili und T.O. Erb geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aprili, D., Erb, T.O. Vermeidung von Komplikationen im Umgang mit zentralen Venenkathetern bei Kindern. Anaesthesist 66, 265–273 (2017). https://doi.org/10.1007/s00101-017-0275-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-017-0275-7

Schlüsselwörter

Keywords

Navigation