Skip to main content
Log in

„Critical illness myopathy“ bei Intensivpatienten

Pathogenetische Konzepte und klinisches Management

Critical illness myopathy in intensive care patients

Pathogenetic concepts and clinical management

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Intensivpatienten sind in hohem Maße gefährdet, im Verlauf der Intensivbehandlung Komplikationen, wie Sepsis, mit der Folge von Multiorganversagen zu entwickeln. Weitaus häufiger jedoch führt die Sepsis selbst zur Aufnahme auf die Intensivstation und kann in eine schwere Sepsis übergehen. Zentrales und peripheres Nervensystem stellen hierbei mögliche „Zielorgane“ dar. Neuromuskuläre Komplikationen äußern sich neben Enzephalopathien peripher in Form von „critical illness polyneuropathy“ (CIP) oder „critical illness myopathy“ (CIM). Beide Komplikationen werden häufig erst bei Entwöhnungsverzögerungen vom Respirator und Einschränkungen der willkürlichen Kraft beim erwachenden Patienten bemerkt. In der Folge verzögern sich Intensivbehandlung und Rehabilitation. Die volkswirtschaftlichen Kosten sind enorm. Die Schwierigkeit der Diagnosestellung von CIM und CIP erfordert einen multidisziplinären Ansatz. Unser Verständnis der zugrunde liegenden Ursachen primärer Myopathien beim Intensivpatienten steckt noch in den Anfängen; spezifische Therapien sind nicht verfügbar. Der vorliegende Artikel gibt einen Überblick über die klinischen Symptome und neue Diagnosestrategien zur frühzeitigen Erfassung von Myopathien bei Intensivpatienten. Schwerpunktmäßig werden aktuelle Ergebnisse und Sichtweisen zu den möglichen Pathomechanismen dargestellt. Hieraus lassen sich bereits einige einfache therapeutische oder präventive Interventionen für die Intensivbehandlung ableiten, die am Schluss zusammengestellt und diskutiert werden.

Abstract

Intensive care patients are at increased risk of developing sepsis with multi-organ failure during treatment (severe sepsis) possibly leading to complications of the central and peripheral nervous system. Among these, septic encephalopathy, critical illness polyneuropathy (CIP) and critical illness myopathy (CIM) are the most important. Neuromuscular complications in particular are difficult to diagnose as they mostly become apparent only when sedation has ceased and the awakening patient experiences difficulties in weaning from the respirator and reduced voluntary strength. CIP and CIM are generally self-limiting, however, they greatly prolong ICU stay and rehabilitation, thus nowadays also imposing a real budget threat. The diagnostics, especially the differentiation between CIM and CIP is difficult and a multi-disciplinary approach involving ICU physicians, anesthetists and neurologists is needed. Our knowledge of the causes of the primary ICU myopathy, although rapidly evolving during recent years, is still in its infancy and specific treatment of CIM is not yet available. The present overview summarizes insights into clinical and new diagnostic strategies for early detection of neuromuscular dysfunction in ICU patients. This article focuses on current concepts and results revealing the pathomechanism(s) of CIM and some simple therapeutic or preventive measures have been deduced which are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bednarik J, Lukas Z, Vondracek P (2003) Critical illness polyneuromyopathy: the electrophysiological components of a complex entity. Crit Care Med 29: 1505–1514

    Google Scholar 

  2. Bentzer P, Grände PO (2004) Low-dose prostacyclin restores an increased protein permeability after trauma in cat skeletal muscle. J Trauma 56: 385–392

    PubMed  Google Scholar 

  3. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity and disease. Physiol Rev 80: 1215–1265

    PubMed  Google Scholar 

  4. Bercker S, Weber-Carstens S, Deja M et al. (2005) Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med 33: 711–715

    Article  PubMed  Google Scholar 

  5. Berghe G van den (2004) How does blood glucose control with insulin save lives in intensive care? J Clin Invest 114: 1187–1195

    Article  PubMed  Google Scholar 

  6. Berghe G van den, Wouters PJ, Weekers F et al. (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345: 1359–1367

    Article  PubMed  Google Scholar 

  7. Berghe G van den, Schoonheydt K, Becx P et al. (2005) Insulin therapy protects the central and peripheral nervous system of intensive care patients. Neurology 64: 1348–1353

    PubMed  Google Scholar 

  8. Bolton CF (2005) Neuromuscular manifestations of critical illness. Muscle Nerve 32: 140–163

    Article  PubMed  Google Scholar 

  9. Brealey D, Brand M, Hargreaves I et al. (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360: 219–223

    Article  PubMed  Google Scholar 

  10. Caruso P, Denari SD, Ruiz SA et al. (2005) Inspiratory muscle training is ineffective in mechanically ventilated critically ill patients. Clinics 60: 479–484

    PubMed  Google Scholar 

  11. Filatov G, Rich MM (2004) Hyperpolarized shifts in the voltage dependence of fast inactivation of NaV1.4 and NaV1.5 in a rat model of critical illness myopathy. J Physiol 559: 813–820

    PubMed  Google Scholar 

  12. Friedrich O (2006) Critical illness myopathy: what is happening? Curr Opin Clin Nutr Metab Care 9: 403–409

    PubMed  Google Scholar 

  13. Friedrich O, Hund E, Weber C et al. (2004) Critical illness myopathy serum fractions affect membrane excitability and intracellular calcium release in mammalian skeletal muscle. J Neurol 251: 53–65

    Article  PubMed  Google Scholar 

  14. Friedrich O, Fink RH, Hund E (2005) Understanding critical illness myopathy: approaching the pathomechanism. J Nutr 135: 1813S-1817S

    PubMed  Google Scholar 

  15. Ganitkevich VY (2003) The role of mitochondria in cytoplasmic Ca2+ cycling. Exp Physiol 88: 91–97

    Article  PubMed  Google Scholar 

  16. Ginz HF, Iaizzi PA, Girard T et al. (2005) Decreased isometric skeletal muscle force in critically ill patients. Swiss Med Wkly 135: 555–561

    PubMed  Google Scholar 

  17. Giovanni S di, Molon A, Broccolini A et al. (2004) Constitutive activation of MAPK cascade in acute quadriplegic myopathy. Ann Neurol 55: 195–206

    Article  PubMed  Google Scholar 

  18. Guttridge DC, Mayo MW, Madrid LV et al. (2000) NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289: 2363–2366

    Article  PubMed  Google Scholar 

  19. Herridge MS, Cheung AM, Tansey CM et al. (2003) One-year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 348: 683–693

    Article  PubMed  Google Scholar 

  20. Horinouchi H, Kumamoto T, Kimura N et al. (2005) Myosin loss in denervated rat soleus muscle after dexamethasone treatment. Pathobiology 72: 108–116

    Article  PubMed  Google Scholar 

  21. Hund E (2001) Neurological complications of sepsis: critical illness polyneuropathy and myopathy. J Neurol 248: 929–934

    Article  PubMed  Google Scholar 

  22. Jonghe B de, Bastuji-Garin S, Sharshar T et al. (2004) Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med 30: 1117–1121

    Article  PubMed  Google Scholar 

  23. Kerbaul F, Brousse M, Collart F et al. (2004) Combination of histopathological and electromyographic patterns can help to evaluate functional outcome of critical ill patients with neuromuscular weakness syndromes. Crit Care 8: R358–366

    Article  PubMed  Google Scholar 

  24. Klaude M, Hammarqvist F, Wernerman J (2005) An assay of microsomal membrane-associated proteasomes demonstrates increased proteolytic activity in skeletal muscle of intensive care unit patients. Clin Nutr 24: 259–265

    Article  PubMed  Google Scholar 

  25. Lacomis D, Zochodne DW, Bird SJ (2000) Critical illness myopathy (editorial). Muscle Nerve 23: 1785–1788

    Article  PubMed  Google Scholar 

  26. Laghi F, Tobin J (2003) Disorders of the respiratory muscles. Am J Respir Crit Care Med 168: 10–48

    Article  PubMed  Google Scholar 

  27. Lanone S, Mebazaa A, Heymes C et al. (2000) Muscular contractile failure in septic patients. Am J Respir Crit Care Med 162: 2308–2315

    PubMed  Google Scholar 

  28. Latronico N (2003) Neuromuscular alterations in the critically ill patient: critical illness myopathy, critical illness neuropathy, or both? Intensive Care Med 29: 1411–1413

    Article  PubMed  Google Scholar 

  29. Latronico N, Peli E, Botteri M (2005) Critical illness myopathy and neuropathy. Curr Opin Crit Care 11: 126–132

    Article  PubMed  Google Scholar 

  30. Lee MC, Wee GR, Kim JH (2005) Apoptosis of skeletal muscle on steroid-induced myopathy in rats. J Nutr 135: 1806S–1808S

    PubMed  Google Scholar 

  31. Lefaucheur JP, Nodine T, Rodriguez P, Brochard L (2006) Origin of ICU acquired paresis determined by direct muscle stimulation. J Neurol Neurosurg Psychiatry 77: 500–506

    Article  PubMed  Google Scholar 

  32. Letter MA de, Doorn PA van, Savelkoul HF et al. (2000) Critical illness polyneuropathy and myopathy (CIPNM): evidence for a local immune activation by cytokine-expression in the muscle tissue. J Neuroimmunol 106: 206–213

    Article  PubMed  Google Scholar 

  33. Leung TW, Wong KS, Hui AC et al. (2005) Myopathic changes associated with severe acute respiratory syndrome. Arch Neurol 62: 1113–1117

    Article  PubMed  Google Scholar 

  34. Maramattom B, Wijdicks EF, Sundt TM, Cassivi SD (2004) Flaccid quadriplegia due to necrotizing myopathy following lung transplantation. Transplant Proc 36: 2830–2833

    Article  PubMed  Google Scholar 

  35. Mesotten D, Swinnen JV, Vanderhoydonc F et al. (2004) Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy. J Clin Endocrinol Metab 89: 219–226

    Article  PubMed  Google Scholar 

  36. Novak F, Heyland DK, Avenell A et al. (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30: 2022–2029

    Article  PubMed  Google Scholar 

  37. Ortolani O, Conti A, Gaudio AR de (2000) The effect of glutathione and N-acetylcysteine on liperoxidative damage in patients with early septic shock. Am J Respir Crit Care Med 161: 1907–1911

    PubMed  Google Scholar 

  38. Reid CL, Campbell IT, Little RA (2004) Muscle wasting and energy balance in critical illness. Clin Nutr 23: 273–280

    Article  PubMed  Google Scholar 

  39. Reinhart K, Karzai W (2001) Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med 29: S121–125

    Article  PubMed  Google Scholar 

  40. Rich MM, Pinter MJ (2003) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547: 555–566

    Article  PubMed  Google Scholar 

  41. Rich MM, Bird SJ, Raps EC et al. (1997) Direct muscle stimulation in acute quadriplegic myopathy. Muscle Nerve 20: 665–673

    Article  PubMed  Google Scholar 

  42. Riedemann NC, Guo RF, Ward PA (2003) Novel strategies for the treatment of sepsis. Nat Med 9: 517–524

    Article  PubMed  Google Scholar 

  43. Roth GA, Moser B, Krenn C et al. (2005) Heightened levels of circulating 20S proteasome in critically ill patients. Eur J Clin Invest 35: 399–403

    Article  PubMed  Google Scholar 

  44. Stibler H, Edström L, Ahlbeck K et al. (2003) Electrophoretic determination of the myosin/actin ratio in the diagnosis of critical illness myopathy. Intensive Care Med 29: 1515–1527

    Article  PubMed  Google Scholar 

  45. Wilmore DW, Shabert JK (1998) Role of glutamine in immunologic responses. Nutrition 14: 618–626

    Article  PubMed  Google Scholar 

  46. Williams AB, Decourten-Myers GM, Fischer JE et al. (1999) Sepsis stimulates release of myofilaments in skeletal muscle by a calcium-dependent mechanism. FASEB J 13: 1435–1443

    PubMed  Google Scholar 

Download references

Danksagung

Wir danken Frau Dr.med. B. Sinner D.E.A.A. (Zentrum Anästhesiologie, Rettungs- und Intensivmedizin, Georg-August-Universität Göttingen) für kritische Durchsicht des Manuskriptes und wertvolle Anregungen.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, O., Hund, E. „Critical illness myopathy“ bei Intensivpatienten. Anaesthesist 55, 1271–1280 (2006). https://doi.org/10.1007/s00101-006-1100-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1100-x

Schlüsselwörter

Keywords

Navigation