Skip to main content
Log in

Wirkungsweise von rekombinantem humanem aktiviertem Protein C

Mechanisms of action of recombinant human activated protein C

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Humanes aktiviertes Protein C (APC) ist eine Serinprotease und wichtiger physiologischer Inhibitor des Gerinnungssystems, dem neben seiner antikoagulativen Wirkung zusätzlich profibrinolytische und antiinflammatorische Eigenschaften zugeschrieben werden. Die Anwendung von APC in rekombinanter Form (Xigris®, Drotrecogin alfa (aktiviert); rekombinantes humanes aktiviertes Protein C, rhAPC) führte bei Patienten mit schwerer Sepsis und Multiorganversagen zu einer signifikanten Senkung der Gesamtletalität. Aus In-vitro-Untersuchungen und Tierversuchen wurden neben den bekannten Wirkmechanismen zusätzlich antiapoptotische Effekte sowie positive Wirkungen von rhAPC auf das Immunsystem, die Permeabilität von Endothelzellen und auf die Mikrozirkulation postuliert. Resultierend aus den vielfältigen Wirkprinzipien wird aktuell der Einsatz von rhAPC in weiteren Indikationsbereichen experimentell untersucht, wie z. B. beim akuten Lungen- und Nierenversagen, beim Schlaganfall, bei Ischämie-Reperfusions-Störungen und der Pankreatitis. Die bessere Kenntnis der Wirkungsmechanismen von rhAPC könnte zukünftig sowohl für die Dosierung und Applikationsweise als auch für eine Erweiterung des Indikationsbereiches von Bedeutung sein.

Abstract

Human activated protein C (APC) is a serineprotease and one of the most important physiological inhibitors of the coagulation system. Apart from anticoagulative effects, profibrinolytic and anti-inflammatory modes of action have been reported for APC. The administration of recombinant human activated protein C (rhAPC), drotrecogin alfa (activated), Xigris®, to patients with severe sepsis and sepsis-induced multi-organ failure reduced mortality in large clinical trials. Anti-apoptotic and immunomodulatory effects of rhAPC have been examined in in vitro experiments and in experimental animal studies. Moreover, a reduction of endothelial cell permeability, enhanced endothelial cell survival as well as improvements of microcirculatory disorders have been proposed for rhAPC. The manifold mechanisms of action of APC may give reasons for its application in diseases other than sepsis, which are characterized by endothelial and microcirculatory dysfunction, e.g. acute pulmonary or renal failure, ischemic stroke, ischemia-reperfusion injury and acute pancreatitis. A better understanding of the anti-inflammatory, anti-apoptotic and immunomodulatory modes of action of APC could be relevant for dosing and mode of application and may lead to a broadening of the indication field for rhAPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Bajzar L, Jain N, Wang P, Walker JB (2004) Thrombin activatable fibrinolysis inhibitor: not just an inhibitor of fibrinolysis. Crit Care Med 32 [Suppl 5]: S320–324

  2. Bernard GR, Vincent J-L, Laterre PF et al., The Recombinant Human Activated Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. New Engl J Med 344 (10): 699–709

    Article  PubMed  CAS  Google Scholar 

  3. Brueckmann M, Hoffmann U, Rossi L de et al. (2004) Activated protein C inhibits the release of macrophage inflammatory protein-1-alpha from THP-1 cells and from human monocytes. Cytokine 26: 106–113

    Article  PubMed  CAS  Google Scholar 

  4. Busch C, Cancilla P, Bault L de, Goldsmith J, Owen W (1982) Use of endothelium cultured on microcarriers as a model for the microcirculation. Lab Invest 47: 498–504

    PubMed  CAS  Google Scholar 

  5. Cheng T, Liu D, Griffin JH et al. (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9: 338–342

    Article  PubMed  CAS  Google Scholar 

  6. Conway EM, Rosenberg RD (1988) Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol 8: 5588–5592

    PubMed  CAS  Google Scholar 

  7. Dahlbaeck B, Hillarp A, Rosen S, Zoeller B (1996) Resistance to activated protein C, the FV:Q506 allele, and venous thrombosis. Ann Hematol 72: 166–176

    Article  CAS  Google Scholar 

  8. Dhainaut JF, Marin N, Mignon A, Vinsonneau C (2001) Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med 29 [Suppl 1]: S42–47

  9. Dhainaut JF, Yan SB, Margolis BD et al., PROWESS Sepsis Study Group (2003) Drotrecogin alfa (activated) (recombinant human activated protein C) reduces host coagulopathy response in patients with severe sepsis. Thromb Hemost 90: 642–653

    CAS  Google Scholar 

  10. Esmon CT (2001) Protein C anticoagulant pathway and its role in controlling microvascular thrombosis and inflammation. Crit Care Med 29 [Suppl 1]: S48–52

    Google Scholar 

  11. Esmon CT (2001) The normal role of activated protein C in maintaining homeostasis and its relevance to critical illness. Crit Care 5 [Suppl 2]: S7–12

  12. Esmon CT (2004) Structure and functions of the endothelial cell protein C receptor. Crit Care Med 32 [Suppl 3]: S298–301

    Google Scholar 

  13. Faust SN, Levin M, Harrison OB et al. (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Engl J Med 345: 408–416

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez JA, Xu X, Liu D, Zlokovic BV, Griffin JH (2003) Recombinant murine activated protein C is neuroprotective in a murine ischemic stroke model. Blood Cells Mol Dis 30: 271–276

    Article  PubMed  CAS  Google Scholar 

  15. Finigan JH, Dudek SM, Singleton PA et al. (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 280:17286–17293

    Article  PubMed  CAS  Google Scholar 

  16. Fukudome K, Esmon CF (1994) Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem 269: 26486–26491

    PubMed  CAS  Google Scholar 

  17. Grey ST, Tsuchida A, Hau H, Orthner CL, Salem HH, Hancock WW (1994) Selective inhibitory effects of the anticoagulant activated protein C on the responses of human mononuclear phagocytes to LPS, IFN-gamma, or phorbol ester. J Immunol 153: 3664–3672

    PubMed  CAS  Google Scholar 

  18. Grinnell BW, Hermann RB, Yan SB (1994) Human protein C inhibits selectin-mediated cell adhesion: role of unique fucosylated oligosaccharide. Glycobiology 4: 221–225

    Article  PubMed  CAS  Google Scholar 

  19. Hauer-Jensen M, Fink LM, Wang J (2004) Radiation injury and the protein C pathway. Crit Care Med 32 [Suppl 5]: S325–330

    Google Scholar 

  20. He XF, Wen ZB, Liu MJ, Zhang H, Li Q, He SL (2004) Levels of plasma des-gamma-carboxy protein C and prothrombin in patients with liver diseases. World J Gastroenterol 10: 3073–3075

    PubMed  CAS  Google Scholar 

  21. Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Fertmann J, Schildberg FW, Menger MD (2004) Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 32: 1011–1017

    Article  PubMed  Google Scholar 

  22. Hooper WC, Phillips DJ, Renshaw MA, Evatt BL, Benson JM (1998) The up-regulation of IL-6 and IL-8 in human endothelial cells by activated protein C. J Immunol 161: 2567–2573

    PubMed  CAS  Google Scholar 

  23. Isobe H, Okajima K, Harada N, Liu W, Okabe H (2004) Activated protein C reduces stress-induced gastric mucosal injury in rats by inhibiting endothelial cell injury. J Thromb Haemost 2: 313–320

    Article  PubMed  CAS  Google Scholar 

  24. Jamdar S, Siriwardena AK (2005) Drotrecogin alfa (recombinant human activated protein C) in severe acute pancreatitis. Crit Care 9: 321–322

    Article  PubMed  Google Scholar 

  25. Joyce DE, Gelbert L, Ciaccia A, Hoff B de, Grinnell BW (2001) Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276: 11199–11203

    Article  PubMed  CAS  Google Scholar 

  26. Kalil AC, Coyle SM, Um JY et al. (2004) Effects of drotrecogin alfa (activated) in human endotoxemia. Blood 21: 222–229

    CAS  Google Scholar 

  27. Levi M, Cate H ten, Poll T van der, Deventer SJ van (1993) Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA 270: 975–979

    Article  PubMed  CAS  Google Scholar 

  28. Levi M, Choi G, Schoots I, Schultz M, Poll T van der (2004) Beyond sepsis: activated protein C and ischemia-reperfusion injury. Crit Care Med 32 [Suppl 5]: S309–312

    Google Scholar 

  29. Liaw PCY (2004) Endogenous protein C activation in patients with severe sepsis. Crit Care Med 32 [Suppl 3]: S214–218

    Google Scholar 

  30. Liaw PCY, Esmon CT, Kahnamoui K et al. (2004) Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood 104: 3958–3964

    Article  PubMed  CAS  Google Scholar 

  31. Lorente JA, Garcia-Frade LJ, Landin L, Pablo R de, Torrado C, Renes E, Garcia-Avello A (1993) Time course of hemostatic abnormalities in sepsis and its relation to outcome. Chest 103: 1536–1542

    Article  PubMed  CAS  Google Scholar 

  32. Lorente JA, Landin L, Renes E, Pablo R de, Jorge P, Rodena E, Liste D (1993) Role of nitric oxide in the hemodynamic changes of sepsis. Crit Care Med 21/5: 759–767

    Google Scholar 

  33. Machala W, Wachowicz N, Komorowska A, Gaszynski W (2004) The use of drotrecogin alfa (activated) in severe sepsis during acute pancreatitis – Two case studies. Med Sci Monit 10: CS31–36

    PubMed  Google Scholar 

  34. Macias WL, Dhainaut JF, Yan SC, Helterbrand JD, Seger M, Johnson G, Small DS (2002) Pharmacokinetic-pharmacodynamic analysis of drotrecogin alfa (activated) in patients with severe sepsis. Clin Pharmacol Ther 72: 391–402

    Article  PubMed  CAS  Google Scholar 

  35. Mammen EF (1998) The haematological manifestations of sepsis. J Antimicrob Chemother 41 [Suppl A]: 17–24

  36. Mizutani A, Okajima K, Uchiba M, Noguchi T (2000) Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation. Blood 95: 3781–3787

    PubMed  CAS  Google Scholar 

  37. Moore KL, Esmon CT, Esmon NL (1989) Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells. Blood 73: 159–165

    PubMed  CAS  Google Scholar 

  38. Murin S, Marelich GP, Arroliga AC, Matthay RA (1998) Hereditary thrombophilia and venous thromboembolism. Am J Respir Crit Care Med 158: 1369–1373

    PubMed  CAS  Google Scholar 

  39. Nick JA, Coldren CD, Geraci MW et al. (2004) Recombinant human activated protein C reduces human endotoxin-induced pulmonary inflammation via inhibition of neutrophil chemotaxis. Blood 104: 3878–3885

    Article  PubMed  CAS  Google Scholar 

  40. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296: 1880–1882

    Article  PubMed  CAS  Google Scholar 

  41. Rigby AC, Grant MA (2004) Protein S: a conduit between anticoagulation and inflammation. Crit Care Med 32 [Suppl 3]: S336–341

    Google Scholar 

  42. Robetorye RS, Rodgers GM (2001) Update on selected inherited venous thrombotic disorders. Am J Hematol 68: 256–268

    Article  PubMed  CAS  Google Scholar 

  43. Sakata Y, Loskutoff DJ, Gladson CL, Hekman CM, Griffin JH (1986) Mechanism of protein C-dependent clot lysis: role of plasminogen activator inhibitor. Blood 68: 1218–1223

    PubMed  CAS  Google Scholar 

  44. Schmidt-Supprian M, Murphy C, While B et al. (2000) Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes. Eur Cytokine Netw 11: 407–413

    PubMed  CAS  Google Scholar 

  45. Schoots IG, Levi M, Vliet AK van, Maas AM, Roossink EHP, Gulik TM van (2004) Inhibition of coagulation and inflammation by activated protein C or antithrombin reduces intestinal ischemia/reperfusion injury in rats. Crit Care Med 32: 1375–1383

    Article  PubMed  CAS  Google Scholar 

  46. Shibata M, Kumar R, Amar A, Fernandez JA, Hofmann F, Griffin JH, Zlokovic BV (2001) Anti-inflammatory, antithrombotic and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation 103: 1799–1805

    PubMed  CAS  Google Scholar 

  47. Shimizu S, Gabazza EC, Taguchi O et al. (2003) Activated protein C inhibits the expression of platelet-derived growth factor in the lung. Am J Respir Crit Care Med 167: 1416–1426

    Article  PubMed  Google Scholar 

  48. Suffredini AF, Harpel PC, Parrillo JE (1989) Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. New Engl J Med 320: 1165–1172

    Article  PubMed  CAS  Google Scholar 

  49. Sugama Y, Tiruppathi C, Janakidevi K, Andersen T, Fenton JW, Malik AB (1992) Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-l: a mechanism for stabilizing neutrophil adhesion. J Cell Biol 119: 935–944

    Article  PubMed  CAS  Google Scholar 

  50. Taoka Y, Okajima K, Uchiba M, Murakami K, Harada N, Johno M, Naruo M (1998) Activated protein C reduces the severity of compression-induced spinal cord injury in rats by inhibiting leukocyte activation. J Neurosci 18: 1393–1398

    PubMed  CAS  Google Scholar 

  51. Taylor FB, Stearns-Kurosawa DJ, Kurosawa S et al. (2000) The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis. Blood 95: 1680–1686

    PubMed  CAS  Google Scholar 

  52. Uchiba M, Okajima K, Oike Y, Ito Y, Fukudome K, Isobe H, Suda T (2004) Activated protein C induces endothelial cell proliferation by mitogen-activated protein kinase activation in vitro and angiogenesis in vivo. Circ Res 95: 34–41

    Article  PubMed  CAS  Google Scholar 

  53. Welty-Wolf KE, Carraway MS, Miller DL et al. (2001) Coagulation blockade prevents sepsis-induced respiratory and renal failure in baboons. Am J Respir Crit Care 164: 1988–1996

    CAS  Google Scholar 

  54. Xu J, Esmon NL, Esmon CT (2000) Metalloproteolytic release of endothelial cell protein C receptor. J Biol Chem 275: 6038–6044

    Article  PubMed  CAS  Google Scholar 

  55. Xue M, Thompson P, Kelso I, Jackson C (2004) Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes. Exp Cell Res 299: 119–127

    Article  PubMed  CAS  Google Scholar 

  56. Yan SB, Helterbrand JD, Hartman DL, Wright TJ, Bernard GR (2001) Low levels of protein C are associated with poor outcome in severe sepsis. Chest 120: 915–922

    Article  PubMed  CAS  Google Scholar 

  57. Yuksel M, Okajima K, Uchiba M, Horiuchi S, Okabe H (2002) Activated protein C inhibits lipopolysaccharide-induced tumor-necrosis factor-α production by inhibiting activation of both nuclear factor-κB and activator protein-1 in human monocytes. Thromb Haemost 88: 267–273

    PubMed  CAS  Google Scholar 

  58. Zeng W, Matter WF, Yan SB, Um SL, Vlahos CJ, Liu L (2004) Effect of drotrecogin alfa (activated) on human endothelial cell permeability and Rho kinase signaling. Crit Care Med 32 [Suppl 5]: S302–308

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brueckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brueckmann, M., Huhle, G. & Max, M. Wirkungsweise von rekombinantem humanem aktiviertem Protein C. Anaesthesist 55 (Suppl 1), 5–15 (2006). https://doi.org/10.1007/s00101-006-1001-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1001-z

Schlüsselwörter

Keywords

Navigation