Skip to main content
Log in

Effekte von Dopamin auf die zelluläre und humorale Immunantwort von Patienten mit Sepsis

Effects of dopamine on cellular and humoral immune responses in septic patients

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Zahlreiche In-vitro- und In-vivo-Studien belegen, dass Dopamin neben seinen hämodynamischen Effekten eine Reihe immunmodulatorischer Wirkungen induziert. Dopamin reduziert die Synthese proinflammatorischer und induziert die Synthese antiinflammatorischer Mediatoren. Dopamin hemmt die Synthese neurohypophysärer Hormone und hemmt die Zellproliferation sowie die Thrombozytenaggregation. Es reduziert die Phagozytoseaktivität neutrophiler Granulozyten und induziert Apoptose. Bei hohen Dopaminserumkonzentrationen, wie sie bei einer Sepsis durch vermehrte endogene Synthese, zusätzliche exogene Applikation und verringerte Clearance erreicht werden, könnten diese Effekte zu relevanten Veränderungen pathophysiologischer Abläufe führen. Um die Bedeutung von Dopamin für die zelluläre und humorale Immunantwort von Patienten mit Sepsis hervorzuheben, sind in dieser Übersicht die speziellen Wirkungen von Dopamin zusammengefasst und die zugrunde liegenden Mechanismen dargestellt.

Abstract

In vitro and in vivo studies have demonstrated that apart from its hemodynamic action dopamine can modulate immune responses. Dopamine reduces the synthesis of proinflammatory and induces the synthesis of anti-inflammatory mediators. Dopamine inhibits neurohormone synthesis, lymphocyte proliferation and platelet aggregation. It reduces the phagocytic activity of neutrophils and induces apoptosis. Particularly with regard to sepsis, where high serum dopamine levels are reached by enhanced endogeneous production, exogeneous application and impaired clearance, this immunomodulation may have a clinical impact. This review summarizes dopamine-mediated immunomodulating effects to advance the knowledge regarding dopamine as an immune regulator under septic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

ADP::

Adenosindiphosphat,

cAMP::

zyklisches Adenosinmonophosphat,

C/EBP::

„CCAAT/enhancing binding protein“,

CBP::

„CREB-binding-Protein“,

CREB::

„cAMP-responsive-element-binding-Protein“,

DOPA::

Dihydroxyphenylalanin,

ENA-78::

„epithelial neutrophile-activating-protein“,

Gro-α::

„growth-related-oncogene“,

HO-1::

Hämoxygenase-1,

H2O2::

Wasserstoffperoxid,

HUVEC::

humane Nabelschnurendothelzellen,

ICAM-1::

„intercellular adhesion molecule-1“,

IFNγ::

Interferon-γ,

IL-1::

Interleukin-1,

LPS::

Lipopolysaccharid,

NAC::

N-Acetylcystein,

MAO::

Monoaminooxidase,

NO::

Stickstoffmonoxid,

NOS::

NO-Synthase,

NF-κB::

„nuclear factor-κ B“,

PKA::

Proteinkinase A,

PMN::

polymorphkernige neutrophile Granulozyten,

ROS::

reaktive Sauerstoffprodukte,

SIRS::

„systemic inflammatory response syndrome“,

SOD::

Superoxiddismutase,

TNF-α::

„tumor necrosis factor-α“,

TSH::

Thyreoidea-stimulierendes Hormon

Literatur

  1. Abraham E, Arcaroli J, Shenkar R (2001) Activation of extracellular signal-regulated kinases, NF-kappa B, and cyclic adenosine 5’-monophosphate response element-binding protein in lung neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia. J Immunol 166:522–530

    CAS  PubMed  Google Scholar 

  2. Asanuma M, Miyazaki I, Ogawa N (2003) Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox Res 5:165–176

    PubMed  Google Scholar 

  3. Bailey AR, Burchett KR (1997) Effect of low-dose dopamine on serum concentrations of prolactin in critically ill patients. Br J Anaesth 78:97–99

    CAS  PubMed  Google Scholar 

  4. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    CAS  PubMed  Google Scholar 

  5. Beck GC, Oberacker R, Kapper S (2001) Modulation of chemokine production in lung microvascular endothelial cells by dopamine is mediated via an oxidative mechanism. Am J Respir Cell Mol Biol 25:636–643

    CAS  PubMed  Google Scholar 

  6. Bell RC, Coalson JJ, Smith JD, Johanson WG Jr (1983) Multiple organ failure and infection in adult respiratory distress syndrome. Ann Intern Med 99:293–298

    CAS  PubMed  Google Scholar 

  7. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356:2139–2143

    CAS  PubMed  Google Scholar 

  8. Berghe G van den, Zegher F de (1996) Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 24:1580–1590

    PubMed  Google Scholar 

  9. Berghe G van den, Zegher F de, Lauwers P (1994) Growth hormone secretion in critical illness: effect of dopamine. J Clin Endocrinol Metab 79:1141–1146

    PubMed  Google Scholar 

  10. Berghe G van den, Zegher F de, Lauwers P (1994) Dopamine suppresses pituitary function in infants and children. Crit Care Med 22:1747–1753

    PubMed  Google Scholar 

  11. Berghe G van den, Zegher F de, Schetz M (1995) Dehydroepiandrosterone sulphate in critical illness: effect of dopamine. Clin Endocrinol 43:451–463

    Google Scholar 

  12. Berghe G van den, Zegher F de, Veldhuis JD et al. (1997) Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol 47:599–612

    Google Scholar 

  13. Berghe G van den, Zegher F de, Bouillon R (1998) Clinical review: acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 83:1827–1834

    PubMed  Google Scholar 

  14. Bergquist J, Tarkowski A, Ewing A, Ekman R (1998) Catecholaminergic suppression of immunocompetent cells. Immunol Today 19:562–567

    CAS  PubMed  Google Scholar 

  15. Braunstein KM, Sarji KE, Kleinfelder J, Schraibman HB, Colwell JA, Eurenius K (2000) The effects of dopamine on human platelet aggregation, in vitro. J Pharmacol Exp Ther 200:449–457

    Google Scholar 

  16. Brown SW, Meyers RT, Brennan KM et al. (2003) Catecholamines in a macrophage cell line. J Neuroimmunol 135:47–55

    CAS  PubMed  Google Scholar 

  17. Brun-Buisson C, Doyon F, Carlet J et al. (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274:968–974

    CAS  PubMed  Google Scholar 

  18. Cesare D de, Fimia GM, Sassone-Corsi P (1999) Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem Sci 24:281–285

    PubMed  Google Scholar 

  19. Chakraborti S, Chakraborti T (1998) Oxidant-mediated activation of mitogen-activated protein kinases and nuclear transcription factors in the cardiovascular system. Cell Signal 10:675–683

    CAS  PubMed  Google Scholar 

  20. Chi DS, Qui M, Krishnaswamy G, Li C, Stone W (2003) Regulation of nitric oxide production from macrophages by LPS and catecholamines. Nitric Oxide 8:127–132

    CAS  PubMed  Google Scholar 

  21. Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362

    CAS  PubMed  Google Scholar 

  22. Colombo C, Cosentino M, Marino F et al. (2003) Dopaminergic modulation of apoptosis in human peripheral blood mononuclear cells: possible relevance for Parkinson’s disease. Ann N Y Acad Sci 1010:679–682

    CAS  PubMed  Google Scholar 

  23. Cook-Mills JM, Cohen RL, Perlman RL, Chambers DA (1995) Inhibition of lymphocyte activation by catecholamines: evidence for a non-classical mechanism of catecholamine action. Immunology 85:544–549

    CAS  PubMed  Google Scholar 

  24. Corre P le, Malledant Y, Tanguy M, Verge R le (1993) Steady-state pharmacokinetics of dopamine in adult patients. Crit Care Med 21:1652–1657

    PubMed  Google Scholar 

  25. Cuche JL, Brochier P, Kliona N, Poirier ML (1990) Conjugated catecholamines in human plasma: where are they coming from? J Lab Clin Med 116:681–686

    CAS  PubMed  Google Scholar 

  26. Debaveye YA, Berghe GH van den (2004) Is there still a place for dopamine in the modern intensive care unit? Anesth Analg 98:461–468

    PubMed  Google Scholar 

  27. Dellinger RP, Carlet JM, Masur H et al. (2004) Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 32:858–873

    Google Scholar 

  28. Derevenco P, Marina C, Pavel T, Olteanu A, Junie M, Baciu I (1992) Phagocytic response in rats following chemical sympathectomy with 6-hydroxydopamine. Rev Roum Physiol 29:57–62

    CAS  PubMed  Google Scholar 

  29. Devins SS, Miller A, Herndon BL (1992) Effects of dopamine on T-lymphocyte proliferative responses and serum prolactin concentrations in critically ill patients. Crit Care Med 20:1644–1649

    CAS  PubMed  Google Scholar 

  30. Dillmann WH (1990) Biochemical basis of thyroid hormone action on the heart. Am J Med 88:626–630

    CAS  PubMed  Google Scholar 

  31. Elenkov IJ, Chrousos GP (2002) Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci 966:290–303

    CAS  PubMed  Google Scholar 

  32. Emerson M, Paul W, Ferlenga P, Semeraro C, Page C (1997) Effects of dopamine and selective dopamine agonists upon platelet accumulation in the cerebral and pulmonary vasculature of the rabbit. Br J Pharmacol 122:682–686

    CAS  PubMed  Google Scholar 

  33. Emerson M, Paul W, Page CP (1999) Regulation of platelet function by catecholamines in the cerebral vasculature of the rabbit. Br J Pharmacol 127:1652–1656

    CAS  PubMed  Google Scholar 

  34. Farmer P, Pugin J (2000) Beta-adrenergic agonists exert their „anti-inflammatory“ effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 279:L675–682

    CAS  PubMed  Google Scholar 

  35. Fry DE, Pearlstein L, Fulton RL, Polk HC Jr (1980) Multiple system organ failure. The role of uncontrolled infection. Arch Surg 115:136–140

    CAS  PubMed  Google Scholar 

  36. Ghosh MC, Mondal AC, Basu S, Banerjee S, Majumder J, Bhattacharaya D, Dasgupta PS (2003) Dopamine inhibits cytokine release and expression of tyrosine kinases, Lck and Fyn in activated T-cells. Int Immunopharmacol 3:1019–1026

    CAS  PubMed  Google Scholar 

  37. Goldsmith PC, Cronin MJ, Weiner RI (1979) Dopamine receptor sites in the anterior pituitary. J Histochem Cytochem 27:1205–1207

    CAS  PubMed  Google Scholar 

  38. Gornekiewicz A, Sautner T, Brostjan C et al. (2000) Catecholamines up-regulate LPS-induced IL-6 production in human microvascular endothelial cells. FASEB J 14:1093–1100

    PubMed  Google Scholar 

  39. Hahn P, Wang P, Tait SM, Ba ZF, Reich SS, Chaudry ICH (1995) Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4:269–273

    CAS  PubMed  Google Scholar 

  40. Hasko G (2001) Receptor-mediated interaction between the sympathetic nervous system and immune system in inflammation. Neurochem Res 26:1039–1044

    CAS  PubMed  Google Scholar 

  41. Hasko G, Szabo C, Merkel K, Bencsics A, Zingarelli B, Kvetan V, Vizi ES (1996) Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by dopamine receptor agonists and antagonists in mice. Immunol Lett 49:143–147

    CAS  PubMed  Google Scholar 

  42. Hasko G, Szabo C, Nemeth Z, Deitch EA (2002) Dopamine suppresses IL-12 p40 production by LPS-stimulated macrophages via adrenoreceptor-mediated mechanism. J Neuroimmunol 122:34–39

    CAS  PubMed  Google Scholar 

  43. Herndon DN, Barrow RE, Kunkel KR (1990) Effects of recombinant human growth hormone on donor-site healing in severely burned children. Ann Surg 12:424–431

    Google Scholar 

  44. Hollenberg SM, Ahrens TS, Annane D et al. (2004) Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 32:1928–1948

    PubMed  Google Scholar 

  45. Juste RN, Moran L, Hooper J, Soni N (1998) Dopamine clearance in critically ill patients. Intensive Care Med 24:1217–1220

    CAS  PubMed  Google Scholar 

  46. Kapper S, Beck G, Riedel S, Prem K, Haak M, Woude FJ van der, Yard BA (2002) Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines. Transplantation 74:253–260

    CAS  PubMed  Google Scholar 

  47. Kerry R, Scrutton MC (1983) Platelet beta-adrenoceptors. Br J Pharmacol 79:681–691

    CAS  PubMed  Google Scholar 

  48. Keyser J de, Waele M de, Convents A, Ebinger G, Vauquelin G (1988) Identification of D1-like dopamine receptors on human blood platelets. Life Sci 42:1797–806

    PubMed  Google Scholar 

  49. Koch T, Heller S (1996) Sepsis/SIRS: pathomechanisms and new therapeutic perspectives. AuI 7/8:386–403

    Google Scholar 

  50. Li CY, Chou TC, Lee CH, Tsai CS, Loh SH, Wong CS (2003) Adrenaline inhibits lipopolysaccharide-induced macrophage inflammatory protein-1 alpha in human monocytes: the role of beta-adrenergic receptors. Anesth Analg 96:518–523

    CAS  PubMed  Google Scholar 

  51. Luo Y, Umegaki H, Wang X, Abe R, Roth GS (1998) Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 273:3756–3764

    CAS  PubMed  Google Scholar 

  52. Madden KS, Sanders VM, Fekten DL (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35:417–448

    CAS  PubMed  Google Scholar 

  53. Martin C, Papazian L, Perrin G, Saux P, Gouin F (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock. Chest 103:1826–1830

    CAS  PubMed  Google Scholar 

  54. Mastronardi CA, Yu WH, McCann S (2001). Lipopolysaccharide-induced tumor necrosis factor-alpha release is controlled by the central nervous system. Neuroimmunomodulation 9:148–156

    CAS  PubMed  Google Scholar 

  55. Meier-Hellmann A (2004) Systemische und regionale Effekte vasoaktiver Substanzen. Dtsch Med Wochenschr 129:2616–2620

    CAS  PubMed  Google Scholar 

  56. Meier-Hellmann A, Sakka S, Reinhart K (2000) Letter to the Editor. Crit Care Med 28:2674

    CAS  PubMed  Google Scholar 

  57. Mikawa K, Kusunoki M, Obara H, Iwai S (1988) Effect of dopamine on plasma growth hormone and prolactin concentrations under anaesthesia. J Int Med Res 16:403–412

    CAS  PubMed  Google Scholar 

  58. Minguet S, Huber M, Rosenkranz L, Schamel WW, Reth M, Brummer T (2005) Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors. Eur J Immunol 35:31–41

    CAS  PubMed  Google Scholar 

  59. Morgan JH 3rd, Gamblin TC, Adkins JR, Groves JR, Dalton ML, Ashley DW (2004) Norepinephrine is a more potent inhibitor of tumor necrosis factor over a range of doses than dopamine. Am Surg 70:526–528

    PubMed  Google Scholar 

  60. Morikawa K, Oseko F, Morikawa S (1994) Immunosuppressive activity of bromocriptine on human T lymphocyte function in vitro. Clin Exp Immunol 95:514–518

    CAS  PubMed  Google Scholar 

  61. Murphy WJ, Rui H, Longo DL (1995) Mini-review: effects of growth hormone and prolactin; immune development and function. Life Sci 57:1–14

    CAS  PubMed  Google Scholar 

  62. Offen D, Ziv I, Gorodin S, Barzilai A, Malik Z, Melamed E (1995) Dopamine-induced programmed cell death in mouse thymocytes. Biochim Biophys Acta 1268:171–177

    CAS  PubMed  Google Scholar 

  63. Pastores SM, Hasko G, Vizi ES, Kvetan V (1996) Cytokine production and its manipulation by vasoactive drugs. New Horiz 4:252–264

    CAS  PubMed  Google Scholar 

  64. Pavlov VA, Tracey KJ (2004) Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci 61:2322–2331

    CAS  PubMed  Google Scholar 

  65. Rio MJ del, Velez-Pardo C (2002) Monoamine neurotoxins-induced apoptosis in lymphocytes by common oxidative stress mechanism. Biochem Pharmacol 63:677–688

    PubMed  Google Scholar 

  66. Ritchie PK, Ashby M, Knight HH, Judd AM (1996) Dopamine increases interleukin 6 release and inhibits tumor necrosis factor release from rat adrenal zona glomerulosa cells in vitro. Eur J Endocrinol 134:610–616

    CAS  PubMed  Google Scholar 

  67. Rodriguez-Arnao J, Miell JP, Ross RJM (1993) Influence of thyroid hormones on the GH-IGF-I axis. Trends Endocrinol Metab 4:169–173

    CAS  Google Scholar 

  68. Ronco JJ (2001) Anti-inflammatory effects of inotropic drugs in the treatment of septic shock. Crit Care Med 29:1837–1838

    CAS  PubMed  Google Scholar 

  69. Russell DH (1989) New aspects of prolactin and immunity: a lymphocyte-derived prolactin-like product and nuclear protein kinase C activation. Trends Pharmacol Sci 10:40–44

    CAS  PubMed  Google Scholar 

  70. Santambrogio L, Lipartiti M, Bruni A, Toso R dal (1993) Dopamine receptors on human T- and B-lymphocytes. J Neuroimmunol 45:113–119

    CAS  PubMed  Google Scholar 

  71. Schena M, Mulatero P, Schiovane D, Mengozzi G, Tesio L, Veglio F (1999) Vasoactive hormones induce nitric oxide synthase mRNA expression and nitric oxide production in human endothelial cells and monocytes. Am J Hypertension 12:388–397

    CAS  Google Scholar 

  72. Sekaran S, Cunningham J, Neal MJ, Hartell NA, Djamgoz MB (2005) Nitric oxide release is induced by dopamine during illumination of the carp retina: serial neurochemical control of light adaptation. Eur J Neurosci 21:2199–2208

    CAS  PubMed  Google Scholar 

  73. Sookhai S, Wang JH, McCourt M, O’Connell D, Redmond HP (1999) Dopamine induces neutrophil apoptosis through a dopamine D1 receptor independent mechanism. Surgery 126:314–322

    CAS  PubMed  Google Scholar 

  74. Sookhai S, Wang JH, Winter D, Power C, Kirwan W, Redmond P (2000) Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock 14:295–299

    CAS  PubMed  Google Scholar 

  75. Sternberg EM, Wedner HJ, Leung MK, Parker CW (1987) Effect of serotonin (5-HT) and other monoamines on murine macrophages: modulation of interferon-gamma induced phagocytosis. J Immunol 138:4360–4365

    CAS  PubMed  Google Scholar 

  76. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    CAS  PubMed  Google Scholar 

  77. Streat SJ, Beddoe AH, Hill GL (1987) Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. J Trauma 27:262–266

    CAS  PubMed  Google Scholar 

  78. Takahashi N, Tetsuka T, Uranishi H, Okamoto T (2002) Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 269:4559–4565

    CAS  PubMed  Google Scholar 

  79. Tsao CW, Lin YS, Cheng JT (1997) Effects of dopamine on immune cell proliferation in mice. Life Sci 61:PL361–371

    CAS  Google Scholar 

  80. Tsao CW, Lin YS, Cheng JT (1998) Inhibition of immune cell proliferation. Life Sci 62: PL335–344

    CAS  Google Scholar 

  81. Uusaro A, Russell JA (2000) Could anti-inflammatory actions of catecholamines explain the possible beneficial effects of supranormal oxygen delivery in critically ill surgical patients? Intensive Care Med 26:299–304

    CAS  PubMed  Google Scholar 

  82. Vincent JL, Backer D de (2003) The International sepsis forum’s controversies in sepsis: my initial vasopressor agent in septic shock is dopamine rather than norepinephrine. Crit Care 7:6–8

    PubMed  Google Scholar 

  83. Viquerat CE, Daly P, Swedberg K, Evers C, Curran D, Parmley WW, Chatterjee K (1985) Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities. Am J Med 78:455–460

    CAS  PubMed  Google Scholar 

  84. Wartofski L, Burman KD (1982) Alterations in thyroid function in patients with systemic illness: The „euthyroid sick syndrome.’‘ Endocr Rev 3:164–167

    Google Scholar 

  85. Wenisch C, Parschalk B, Weiss A et al. (1996) High-dose catecholamine treatment decreases polymorphonuclear leukocyte phagocytic capacity and reactive oxygen production. Clin Diagn Lab Immunol 3:423–428

    CAS  PubMed  Google Scholar 

  86. Yang M, Zhang H, Voyno-Yasenetskaya T, Ye RD (2003) Requirement of Gbetagamma and c-Src in D2 dopamine receptor-mediated nuclear factor-kappaB activation. Mol Pharmacol 64:447–455

    CAS  PubMed  Google Scholar 

  87. Zegher F de, Berghe G van den, Devlieger H, Eggermont E, Veldhuis JD (1993) Dopamine inhibits growth hormone and prolactin secretion in the human newborn. Pediatr Res 34:642–645

    PubMed  Google Scholar 

  88. Zhu XH, Zellweger R, Wichmann MW, Ayala A, Chaudry ICH (1997) Effects of prolactin and metoclopramide on macrophage cytokine gene expression in late sepsis. Cytokine 9:437–446

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, G., Hanusch, C., Brinkkoetter, P. et al. Effekte von Dopamin auf die zelluläre und humorale Immunantwort von Patienten mit Sepsis. Anaesthesist 54, 1012–1020 (2005). https://doi.org/10.1007/s00101-005-0887-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-005-0887-1

Schlüsselwörter

Keywords

Navigation