Skip to main content
Log in

Hämodynamische Reaktionen nach präoperativer hypervolämischer Hämodilution mit hyperton-hyperonkotischen Kolloiden bei Koronarbypassoperationen

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Fragestellung

Die Möglichkeiten der Restriktion leicht diffusibler kristalloider Lösungen bei gleichzeitig erreichbarer hämodynamischer Stabilisierung lassen den Einsatz hypertoner Kolloide als Volumenersatzmittel bei herzchirurgischen Patienten geeignet erscheinen. Ziel der vorliegenden Untersuchung war es, erstmalig die hämodynamischen Effekte verschiedener hyperton-hyperonkotischer Kolloide bei koronarchirurgischen Patienten zu überprüfen.

Methodik

Es erhielten 43 Patienten mit normaler linksventrikulärer Ejektionsfraktion, die sich elektiv einer Koronarbypassoperation unterziehen mussten, nach Narkoseeinleitung, jedoch vor Operationsbeginn randomisiert folgende "Studienlösungen": 1.) 750 ml/m2 KOF Natriumchloridlösung (0,9%iges NaCl; n=10, Kontrollgruppe, NACL); 2.) 250 ml/m2 KOF Hydroxyethylstärke (10%ige HES, 200/0,5) und 400 ml/m2 KOF 0,9%iges NaCl (n=9, HES); 3.) 250 ml/m2 KOF 10%iges Dextran 40 und 300 ml/m2 KOF 0,9%iges NaCl (n=8, DEX); 4.) 150 ml/m2 KOF hypertones NaCl (7,2%ig), darin 10%ige HES, 200/0,5 (n=8, HYPER-HES) oder 5.) 150 ml/m2 KOF hypertones NaCl (7,2%ig), darin 10%iges Dextran60 (n=8, HYPER-DEX). Hämodynamische Messungen erfolgten unmittelbar vor und 15 min nach Infusion der Studienlösungen sowie bis 60 min nach Beendigung der extrakorporalen Zirkulation (EKZ) in 10-minütigen Abständen. Flüssigkeitsbilanzen wurden intraoperativ, postoperativ bis 24 h nach Operationsende und für den Zeitraum während EKZ berechnet.

Ergebnisse

Nach Hämodilution kam es gegenüber dem Ausgangswert in allen Gruppen zu vergleichbaren Erhöhungen der rechts- bzw. linksventrikulären Füllungsdrücke. In der NACL-Gruppe zeigten sich leichte, in den 4 Gruppen mit kolloidaler Hämodilution hingegen deutliche Anstiege der Herz (CI)- und Schlagvolumenindices (SVI) sowie des Sauerstoffangebotes (DO2) in der Präbypassphase. Diese Veränderungen erreichten in den Gruppen HYPER-HES und HYPER-DEX (CI: +38%, +54%; SVI: +42%, +40%; DO2: +34%; +41%) statistische Signifikanz. Herzfrequenz und mittlerer arterieller Blutdruck zeigten keine wesentlichen Veränderungen nach Hämodilution. Der intraoperative Kristalloidbedarf war in den Gruppen HES und DEX deutlich, in den Gruppen HYPER-HES und HYPER-DEX (1.013±341 ml/m2 KOF; 1.096±234 ml/m2 KOF) signifikant gegenüber der Kontrollgruppe (NACL, 1.629±426 ml/m2 KOF) erniedrigt. Die Serum-Natrium-Konzentration erreichte in den Gruppen HYPER-HES und HYPER-DEX maximal 150±3 mmol/l bzw. 149±4 mmol/l (Ausgangswerte: 141±3 mmol/l bzw. 141±1 mmol/l)

Schlussfolgerungen

Der präoperative Volumenersatz mit hyperonkotischen Kolloiden führt gegenüber einer präoperativen Volumensubstitution mit physiologischer Natriumchloridlösung zu verbesserten hämodynamischen Bedingungen während der Präbypassphase und zu einer Reduktion des intraoperativen Kristalloidbedarfs bei koronarchirurgischen Patienten mit normaler Ventrikelfunktion. Der volumensparende Effekt kann durch die Zubereitung hyperonkotischer Kolloide in hypertoner Natriumchloridlösung gesteigert werden, während die Auswahl des Kolloids (HES oder Dextran) von untergeordneter Bedeutung zu sein scheint.

Summary

Objective

Using hyperoncotic colloids as volume replacement to provide haemodynamic stability appears to be a suitable approach to diminish fluid overload and subsequent interstitial edema during cardiac surgery. The aim of the present study was to investigate for the first time the haemodynamic effects following preoperative haemodilution with different hypertonic hyperoncotic colloid solutions in patients undergoing coronary artery bypass grafting.

Methods

A total of 43 patients with normal left ventricular ejection fraction, undergoing elective coronary artery bypass grafting received preoperatively after induction of anaesthesia according to randomisation the following solutions: 1: 750 ml/m2 (body surface area) NaCl 0.9% (n=10, control group, NACL), 2: 250 ml/m2 10% HES 200/0.5 plus 400 ml/m2 NaCl 0.9% (n=9, HES), 3: 250 ml/m2 10% dextran 40 plus 300 ml/m2 NaCl 0.9% (n=8, DEX), 4: 150 ml/m2 hypertonic NaCl (7.2%) 10% HES 200/0.5 (n=8, HYPER-HES), 5: 150 ml/m2 hypertonic NaCl (7.2%) 10% dextran 60 (n=8, HYPER-DEX). Haemodynamic measurements were performed immediately before and 15 min after haemodilution and up to 60 min after termination of extracorporeal circulation in 10 min intervals. Fluid balances were calculated separately, during the time period of surgery, postoperatively up to 24 h after termination of surgery, and during the course of extracorporeal circulation.

Results

After haemodilution with colloid solutions, a marked increase was observed in all patients and with HYPER-HES and HYPER-DEX a statistically significant increase in cardiac index (CI: +38%, +54%), stroke volume index (SVI: +42%, +40%), and oxygen availability (DO2: +34%; +41%), respectively, was observed during the pre-bypass period. At the same time right and left ventricular filling pressures increased slightly in all patients but these changes did not differ among the treatment groups. Heart rate and mean arterial pressure remained almost unchanged in all groups. The amount of crystalloid solutions required by the patients during surgery was markedly decreased with HES and DEX and significantly decreased with HYPER-HES and HYPER-DEX (1,013±341 ml/m2, 1,096±234 ml/m2) compared to the control group NACL (1629±426 ml/m2). Serum sodium concentrations increased with HYPER-HES and HYPER-DEX to maximal values of 150±3 mmol/l and 149±4 mmol/l, respectively (baseline 141±3 mmol/l, 141±1 mmol/l)

Conclusions

Compared to isotonic saline solution, preoperative volume replacement with hyperoncotic colloids improves haemodynamic conditions during the pre-bypass period in patients with normal left ventricular function undergoing coronary artery bypass grafting. Additionally intraoperative crystalloid solution requirements are reduced. The volume saving effects are increased with administration of hyperoncotic colloids in a preparation with hypertonic saline solution, whereas the choice of the colloid, either hydroxyethyl starch or dextran seems to be of minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adams HA, Hempelmann G (1991) Therapie mit Volumenersatzmitteln. Anaesth Intensivmed 32:277–283

    Google Scholar 

  2. Arieff AI (1986) Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. New Engl J Med 314:1529–1534

    CAS  PubMed  Google Scholar 

  3. Bauer M, Marzi I, Ziegenfuss T, Seeck G, Bühren V, Larsen R (1993) Comparative effects of crystalloid and small volume resuscitation on hepatic microcirculation after hemorrhagic shock. Circ Shock 40:187–193

    CAS  PubMed  Google Scholar 

  4. Bernstein RL, Rosenberg AD, Pada EY, Jaffe FF (1987) A severe reaction to dextran despite hapten inhibition. Anesthesiology 67:567–569

    CAS  PubMed  Google Scholar 

  5. Boldt J, Kling D, Herold C, Dapper F, Hempelmann G (1990) Volume therapy with hypertonic saline hydroxyethyl starch solution in cardiac surgery. Anaesthesia 45:928–934

    CAS  PubMed  Google Scholar 

  6. Boldt J, Zickmann B, Thiel A, Herold CH, Dapper F, Hempelmann G (1990) Hyperosmolarer Volumenersatz in der Herzchirurgie. Anaesthesist 39:412–419

    CAS  PubMed  Google Scholar 

  7. Boldt J, Knothe C, Zickmann B, Hammermann H, Stertmann WA, Hempelmann G (1994) Volume loading with hypertonic saline solutions: endocrinologic and circulatory responses. J Cardiothorac Vasc Anesth 8:317–323

    CAS  PubMed  Google Scholar 

  8. Boyle EMJ, Pohlman TH, Johnson MC, Verrier ED (1997) Endothelial cell injury in cardiovascular surgery: the systemic inflammatory response. Ann Thorac Surg 63:277–284

    PubMed  Google Scholar 

  9. Breckenridge IM, Diggerness SB, Kirklin JW (1970) Increased intracellular fluid after open intracardiac operation. Surg Gynecol Obstet 131:53–56

    CAS  PubMed  Google Scholar 

  10. Bruins P, Velthuis H te, Yazdanbakhsh AP et al. (1997) Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrythmia. Circulation 96:3542–3548

    CAS  PubMed  Google Scholar 

  11. Cavarocchi NC, England MD, Schaff HV, Russo P, Orszulak TA, Schnell WAJ, O'Brien JF (1986) Oxygen free radical generation during cardiopulmonary bypass: correlation with complement activation. Circulation 74:130–133

    Google Scholar 

  12. Christ F, Niklas M, Kreimeier U, Lauterjung L, Peter K, Messmer K (1997) Hyperosmotic-hyperoncotic solutions during abdominal aortic aneurysm (AAA) resection. Acta Anaesthesiol Scand 41:62–70

    CAS  PubMed  Google Scholar 

  13. Corso CO, Okamoto S, Rüttinger D, Messmer K (1999) Hypertonic saline dextran attenuates leucocyte accumulation in the liver after hemorrhagic shock and resuscitation. J Trauma 46:417–423

    CAS  PubMed  Google Scholar 

  14. Drobin D, Hahn RG (2002) Kinetics of isotonic and hypertonic plasma volume expanders. Anesthesiology 96:1371–1380

    CAS  PubMed  Google Scholar 

  15. Elliott MJ, Finn AHR (1993) Interaction between neutrophils and the endothelium. Ann Thorac Surg 56:1503–1508

    CAS  PubMed  Google Scholar 

  16. Friedmann M, Wang SY, Selike FW, Cohn WE, Weintraub RM, Johnson RG (1996) Neutrophil adhesion blockade with NPC 15669 decreases pulmonary injury after total cardiopulmonary bypass. J Thorac Cardiovasc Surg 111:460–468

    PubMed  Google Scholar 

  17. Gunther RA, Perron PR, Nguyen MT, Kramer GC (1990) Dehydration and the cardiovascular response to hypertonic saline/dextran resuscitation in sheep. Eur Surg Res 22:292

    Google Scholar 

  18. Halvorsen L, Gunther RA, Dubick MA, Holcraft JW (1991) Dose response characteristics of hypertonic saline dextran solutions. J Trauma 31:785–794

    CAS  PubMed  Google Scholar 

  19. Hannemann L, Reinhart K, Korell R, Spies C, Bredle DL (1996) Hypertonic saline in stabilized hyperdynamic sepsis. Shock 5:130–134

    CAS  PubMed  Google Scholar 

  20. Härtl R, Ghajar J, Hochleuthner H, Mauritz W (1998) Hypertonic/hyperoncotic saline reliably reduces ICP in severely head-injured patients with intracranial hypertension. Acta Neurochir 70:126–129

    Google Scholar 

  21. Holcroft JW, Vassar MJ, Turner JE, Derlet RW, Kramer GC (1987) 3% NaCl and 7.5% NaCl/dextran 70 in the resuscitation of severely injured patients. Ann Surg 206:279–288

    CAS  PubMed  Google Scholar 

  22. Horn P, Münch E, Vajkoczy P et al. (2000) Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res 21:758–764

    Google Scholar 

  23. Järvelä K, Kaukinen S (2002) Hypertonic saline (7.5%) decreases perioperative weight gain following cardiac surgery. J Cardiothorac Vasc Anesth 16:43–46

    PubMed  Google Scholar 

  24. Jonge E de, Levi M (2001) Effects of different plasma substitutes on blood coagulation: a comparative review. Crit Care Med 29:1261–1267

    PubMed  Google Scholar 

  25. Kawamura T, Wakausawa R, Okada K, Inada S (1993) Elevation of cytokines during open heart surgery with cardiopulmonary bypass: participation of interleukin 8 and 6 in reperfusion injury. Can J Anaesth 40:1016–1021

    CAS  PubMed  Google Scholar 

  26. Kharazmi A, Andersen LW, Baek L, Valerius NH, Laub M, Rasmussen JP (1989) Endotoxemia and enhanced generation of oxygen radicals by neutrophils from patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 98:381–385

    CAS  PubMed  Google Scholar 

  27. Kleemann CR (1979) CNS manifestations of disordered salt and water balance. Hosp Pract:59–73

    Google Scholar 

  28. Kreimeier U, Brückner UB, Niemczyk S, Messmer K (1990) Hyperosmotic saline dextran for resuscitation from traumatic-hemorrhagic hypotension: effect on regional blood flow. Circ Shock 32:83–99

    CAS  PubMed  Google Scholar 

  29. Maningas PA, Mattox KL, Pepe PE, Jones RL, Feliciano DV, Burch JM (1989) Hypertonic saline-dextran solutions for the prehospital management of traumatic hypotension. Am J Surg 157:528–533

    CAS  PubMed  Google Scholar 

  30. Marshall RJ, Shepherd JT (1959) Effect of injections of hypertonic solutions on blood flow through the femoral artery of the dog. Am J Physiol 97:951–954

    Google Scholar 

  31. McCord JM (1988) Free radicals and myocardial ischaemia: overview and outlook. Free Radic Biol Med 4:9–14

    CAS  PubMed  Google Scholar 

  32. Modig J (1988) Comparison of dextran 70 and Ringer's on pulmonary function, hemodynamics and survival in experimental septic shock. Crit Care Med 16:266–271

    CAS  PubMed  Google Scholar 

  33. Monafo WW, Chuntrasakul C, Ayvazian VH (1973) Hypertonic sodium solutions in the treatment of burn shock. Am J Surg 126:778–784

    CAS  PubMed  Google Scholar 

  34. Nakayama S, Sibley L, Gunther RA, Holcroft JW, Kramer GC (1984) Small-volume resuscitation with hypertonic saline (2400 mOsm/Liter) during hemorrhagic shock. Circ Shock 13:149–159

    CAS  PubMed  Google Scholar 

  35. Onarheim H, Missavage AE, Kramer GC, Gunther RA (1990) Hypertonic saline/dextran resuscitation after major burns. Eur Surg Res 22:305

    Google Scholar 

  36. Pascual JMS, Watson JC, Runyon AE, Wade CE, Kramer GC (1988) Resuscitation of intraoperative hypovolaemia: a comparison of normal saline and hyperosmotic/hyperoncotic solutions in swine. Crit Care Med 20:200–210

    Google Scholar 

  37. Prien T, Thülig B, Wüsten R, Schoofs J, Weyand M, Lawin P (1993) Hyperton-hyperonkotischer Volumenersatz (7,5% NaCl/10% Hydroxyethylstärke 200000/0,5) bei Patienten mit Koronararterienstenosen. Zentralbl Chir 118:257–266

    CAS  PubMed  Google Scholar 

  38. Ragaller M, Müller M, Bleyl JU, Strecker A, Segiet TW, Ellinger K, Albrecht DM (2000) Hemodynamic effects of hypertonic hydroxyethyl starch 6% solution after declamping during abdominal aortic aneurysm repair. Shock 13:367–373

    CAS  PubMed  Google Scholar 

  39. Schmoker JD, Zhuang J, Shackford SR (1991) Hypertonic fluid resuscitation improves cerebral oxygen delivery and reduces intracranial pressure after hemorrhagic shock. J Trauma 31:1607–1613

    CAS  PubMed  Google Scholar 

  40. Shasby DM, Shasby SS, Peach MJ (1983) Granulocytes and PMA increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Am Rev Respir Dis 127:72–76

    CAS  PubMed  Google Scholar 

  41. Sirieix D, Hongnat JM, Delayance S, D'Attelis N, Vicaut E, Berrebi A (1999) Comparison of the acute hemodynamic effects of hypertonic or colloid infusions immediately after mitral valve repair. Crit Care Med 27:2159–2165

    CAS  PubMed  Google Scholar 

  42. Steinbauer M, Harris AG, Leiderer R, Abels C, Messmer K (1999) Impact of dextran on microvascular disturbances and tissue injury following ischemia/reperfusion in striated muscle. Shock 9:345–351

    Google Scholar 

  43. Strauss RG (1988) Volume replacement and coagulation: a comparative review. J Cardiothorac Anesth 2 [Suppl 1]:24–32

    Google Scholar 

  44. Templeton GH, Mitchell JH, Wildenthal K (1972) Influence of hyperosmolarity on left ventricular stiffness. Am J Physiol 222:1406–1411

    CAS  PubMed  Google Scholar 

  45. Tollofsrud S, Noddeland H (1998) Hypertonic saline and dextran after coronary artery surgery mobilises fluid excess and improves cardiorespiratory functions. Acta Anaesthesiol Scand 42:154–161

    CAS  PubMed  Google Scholar 

  46. Tonz M, Mihaljevic T, Segesser LK von, Fehr J, Schmid ER, Turina MI (1995) Acute lung injury during cardiopulmonary bypass: are the neutrophils responsible? Chest 108:1551–1556

    CAS  PubMed  Google Scholar 

  47. Utley JR, Stephens DB (1982) Fluid balance during cardiopulmonary bypass. In: Utley JR (ed) Pathophysiology and techniques of cardiopulmonary bypass, vol 1. Williams & Wilkens, Baltimore, pp 23–35

  48. Vassar MJ, Perry CA, Gannaway WL, Holcraft JW (1991) 7.5% Sodium chloride/dextran for resuscitation of trauma patients undergoing helicopter transport. Arch Surg 126:1065–1072

    CAS  PubMed  Google Scholar 

  49. Wade CE, Bossone C, Hunt M, Loveday J, Hannon JP (1987) Cardiovascular, hormonal, and metabolic responses to resuscitation with small volumes of hypertonic solutions following hemorrhage. Fed Proc 46:805–810

    Google Scholar 

  50. Wade CE, Hannon JP, Bossone CA, Hunt MM, Loveday JA, Coppes R, Gildengorin VL (1989) Resuscitation of conscious pigs following hemorrhage: comparative efficacy of normal saline, 7.5% NaCl, 6% dextran 70, and 7.5% NaCl in 6% dextran 70. Circ Shock 29:193–204

    CAS  PubMed  Google Scholar 

  51. Wade CE, Kramer GC, Grady JJ, Fabian TC, Younes RN (1994) Efficacy of hypertonic saline/dextran (HSD) or hypertonic saline (HS) on survival following traumatic injury: a metaanalysis. Abstracts of the international conference on hypertonic resuscitation SALT 6, Teton Village, Wyoming

  52. Walsh JC, Kramer GC (1991) Resuscitation of hypovolemic sheep with hypertonic saline/dextran: the role of dextran. Circ Shock 34:336–343

    CAS  PubMed  Google Scholar 

  53. Wildenthal KD, Mierzwiak DS, Mitchell JH (1969) Acute effects of increased serum osmolality on left ventricular performance. Am J Physiol 216:898–904

    CAS  PubMed  Google Scholar 

  54. Younes RN, Aun F, Accioly CQ, Casale LP, Szajnbok I, Birollini D (1992) Hypertonic solutions in the treatment of hypovolemic shock: a prospective, randomized study in patients in the emergency room. Surgery 111:380–385

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Molter.

Anhang

Anhang

$$ {\text{SVR}}{\left[ {{\text{dyn}}\; \times \;\sec \; \times \;{\text{cm}}^{{ - 5}} } \right]} = \frac{{{\text{MAP}}{\left[ {{\text{mmHg}}} \right]} - {\text{RAP}}{\left[ {{\text{mmHg}}} \right]}}} {{{\text{C}}{\text{.O}}{\text{.}}{\left[ {{\text{l}}/\min } \right]}}} \times \;80 $$
$$ {\text{PVR}}{\left[ {{\text{dyn}}\; \times \;\sec \; \times \;{\text{cm}}^{{ - 5}} } \right]} = \frac{{{\text{MPAP}}{\left[ {{\text{mmHg}}} \right]} - {\text{PCWP}}{\left[ {{\text{mmHg}}} \right]}}} {{{\text{C}}{\text{.O}}{\text{.}}{\left[ {{\text{l}}/\min } \right]}}} \times \;80 $$
$$ {{\text{CI}}}{\left[ {{\text{l/}}min{\text{/m}}^{{\text{2}}} } \right]}{\text{ = }}\frac{{{{\text{C}}{\text{.O}}{\text{.}}}{\text{ }}{\left[ {{\text{l/}}min} \right]}}} {{{{\text{BSA}}{\left[ {{\text{m}}^{{\text{2}}} } \right]}}}} $$
$$ {\text{SVI}}{\left[ {{\text{ml/m}}^{{\text{2}}} } \right]}{\text{ = }}\frac{{{{\text{C}}{\text{.O}}{\text{.}}}{\text{ }}{\left[ {{\text{l/min}}} \right]}}} {{{{\text{HR}}}{\left[ {{\text{min}}^{{{\text{ - 1}}}} } \right]}\; \times \;{{{\text{BSA}}}}{\left[ {{\text{m}}^{2} } \right]}}} \times \;{\text{10}}^{{\text{3}}} $$
$$ {\text{LVSWI}}{\left[ {{\text{g}}\; \times \;{\text{m/m}}^{2} } \right]} = \frac{{{\text{1}}{\text{,36}}\; \times \;{\left( {{\text{MAP}}{\left[ {{\text{mmHg}}} \right]} - {\text{PCWP}}{\left[ {{\text{mmHg}}} \right]}} \right)}}} {{100}} \times \;{\text{SVI}}{\left[ {{\text{ml}}/{\text{m}}^{2} } \right]} $$
$$ {\text{RVSWI}}{\left[ {{\text{g}}\; \times \;{\text{m/m}}^{2} } \right]} = \frac{{{\text{1}}{\text{,36}}\; \times \;{\left( {{\text{MPAP}}{\left[ {{\text{mmHg}}} \right]} - {\text{RAP}}{\left[ {{\text{mmHg}}} \right]}} \right)}}} {{100}} \times \;{\text{SVI}}{\left[ {{\text{ml}}/{\text{m}}^{2} } \right]} $$
$$ {\text{DO}}_{2} {\left[ {{\text{ml}}/\min } \right]} = {\text{caO}}_{2} {\left[ {{\text{ml/dl}}} \right]} \times {\text{CO}}{\left[ {{\text{l}}/\min } \right]} \times 10 $$

und:

$$ {{\text{caO}}_{{\text{2}}} }{\left[ {{\text{ml/dl}}} \right]}{\text{ = }}{{\text{caHb}}}{\left[ {{\text{g/dl}}} \right]}\; \times \;{\text{saO}}_{2} \; \times \;{{\text{1}}{\text{,39}}}{\left[ {{\text{ml/g}}} \right]}{\text{ + }}\alpha {\text{O}}_{2} {\left[ {{\text{ml/dl/mmHg}}} \right]}\; \times \;{\text{paO}}_{2} {\left[ {{\text{mmHg}}} \right]} $$
$$ \alpha {\text{O}}_{{\text{2}}} {\left[ {{\text{ml/dl/mmHg}}} \right]}{\text{ = }}\frac{{{{\text{caHb}}}{\left[ {{\text{g/dl}}} \right]}\; \times \;{{\text{0}}{\text{,00041}}}{\left[ {{\text{ml/g/atm}}} \right]}{\text{ + }}{{\text{0}}{\text{,0217}}}{\left[ {{\text{ml/ml/atm}}} \right]}}} {{{{\text{7}}{\text{,53}}}}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molter, G.P., Soltész, S., Larsen, R. et al. Hämodynamische Reaktionen nach präoperativer hypervolämischer Hämodilution mit hyperton-hyperonkotischen Kolloiden bei Koronarbypassoperationen. Anaesthesist 52, 905–918 (2003). https://doi.org/10.1007/s00101-003-0568-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-003-0568-x

Schlüsselwörter

Keywords

Navigation