Skip to main content

Advertisement

Log in

Induced membrane maintains its osteogenic properties even when the second stage of Masquelet’s technique is performed later

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

A Correction to this article was published on 30 October 2019

This article has been updated

Abstract

Purpose

Previous clinical studies have shown the effectiveness of bone repair using two-stage surgery called the induced membrane (IM) technique. The optimal wait before the second surgery is said to be 1 month. We have been successfully performing the IM technique while waiting an average of 6 months to carry out the second stage. We hypothesised that the IM maintains its beneficial capabilities, even at a later second stage, and that there is no relation between the speed of bone union and the wait between the first and second stage. We sought to explore the biological properties of ‘older’ IMs sampled to substantiate our clinical observations.

Methods

Thirty-four patients with a critical size defect were treated with the IM technique. In seven of these patients, pieces of the IM were collected 4.2–14.7 months after the first surgery. IM-derived cell phenotype and osteogenic potential were investigated using in vitro studies (n = 4) while IM nature and function were investigated by histology and immunohistochemistry (n = 3).

Results

The median wait before the second surgery was 5.8 months [range 1.2–14.7] and bone healing occurred at 7.6 months [range 2.5–49.9] for 26 patients. IMs aged 4.2–14.7 months contained mesenchymal stromal cells with in vitro osteogenic potential and corresponded to a multipotent tissue with osteogenic and chondrogenic capabilities contributing to osteogenesis over time.

Conclusion

This preliminary study suggests the IM retains its powerful osteogenic properties over time and that waiting longer between the two surgeries does not delay bone union.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 30 October 2019

    The original version of this article unfortunately contained a mistake. The presentation and legends of Figs. 4 and 5 were incorrect. The corrected versions are given below. The original article has been corrected.

References

  1. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45(3):346–53.

    CAS  PubMed  Google Scholar 

  2. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R. Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury. 2011;42(6):591–8.

    Article  PubMed  Google Scholar 

  3. Henrich D, Seebach C, Nau C, Basan S, Relja B, Wilhelm K, et al. Establishment and characterization of the Masquelet induced membrane technique in a rat femur critical-sized defect model. J Tissue Eng Regenerative Med. 2013;10(10):E382–96. https://doi.org/10.1002/term.1826.

    Article  CAS  Google Scholar 

  4. Aho OM, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskela HV. The mechanism of action of induced membranes in bone repair. J Bone Joint Surg Am Volume. 2013;95(7):597–604. https://doi.org/10.2106/JBJS.L.00310.

    Article  Google Scholar 

  5. Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone. 2013;57(2):484–92. https://doi.org/10.1016/j.bone.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  6. Liu H, Hu G, Shang P, Shen Y, Nie P, Peng L, et al. Histological characteristics of induced membranes in subcutaneous, intramuscular sites and bone defect. Orthop Traumatol Surg Res. 2013;99(8):959–64. https://doi.org/10.1016/j.otsr.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  7. Gouron R, Petit L, Boudot C, Six I, Brazier M, Kamel S, et al. Osteoclasts and their precursors are present in the induced-membrane during bone reconstruction using the Masquelet technique. J Tissue Eng Regenerative Med. 2014;11(2):382–9. https://doi.org/10.1002/term.1921.

    Article  CAS  Google Scholar 

  8. Taylor BC, Hancock J, Zitzke R, Castaneda J. Treatment of bone loss with the induced membrane technique: techniques and outcomes. J Orthop Trauma. 2015;29(12):554–7. https://doi.org/10.1097/BOT.0000000000000338.

    Article  PubMed  Google Scholar 

  9. Flamans B, Pauchot J, Petite H, Blanchet N, Rochet S, Garbuio P, et al. Use of the induced membrane technique for the treatment of bone defects in the hand or wrist, in emergency. Chir Main. 2010;29(5):307–14.

    Article  CAS  PubMed  Google Scholar 

  10. Masquelet AC, Obert L. Induced membrane technique for bone defects in the hand and wrist. Chir Main. 2010;29(Suppl 1):S221–4.

    Article  PubMed  Google Scholar 

  11. Zappaterra T, Ghislandi X, Adam A, Huard S, Gindraux F, Gallinet D, et al. Induced membrane technique for the reconstruction of bone defects in upper limb. A prospective single center study of nine cases. Chir Main. 2011;30(4):255–63.

    Article  CAS  PubMed  Google Scholar 

  12. Villemagne T, Bonnard C, Accadbled F, L’Kaissi M, de Billy B, Sales de Gauzy J. Intercalary segmental reconstruction of long bones after malignant bone tumor resection using primary methyl methacrylate cement spacer interposition and secondary bone grafting: the induced membrane technique. J Pediatr Orthop. 2011;31(5):570–6. https://doi.org/10.1097/bpo.0b013e31821ffa8201241398-201107000-00017.

    Article  PubMed  Google Scholar 

  13. Zwetyenga N, Fricain JC, De Mones E, Gindraux F. Induced membrane technique in oral and maxillofacial reconstruction. Rev Stomatol Chir Maxillofac. 2012;113(4):231–8. https://doi.org/10.1016/j.stomax.2012.05.008s0035-1768(12)00117-9.

    Article  CAS  PubMed  Google Scholar 

  14. Moris V, Loisel F, Cheval D, See LA, Tchurukdichian A, Pluvy I, et al. Functional and radiographic evaluation of the treatment of traumatic bone loss of the hand using the Masquelet technique. Hand Surg Rehabil. 2016;35(2):114–21. https://doi.org/10.1016/j.hansur.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  15. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  16. Obert L, Nallet A, Melin M, Zwetyenga N, Gindraux F (2012) Histological, immunological and in vitro analysis of human induced membrane. In: Medical S (ed) Technique de Masquelet p. 81–92.

  17. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells Mater. 2012;23:13–27.

    Article  CAS  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  19. Delorme B, Ringe J, Gallay N, Le Vern Y, Kerboeuf D, Jorgensen C, et al. Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood. 2008;111(5):2631–5. https://doi.org/10.1182/blood-2007-07-099622.

    Article  CAS  PubMed  Google Scholar 

  20. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA. Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999;14(7):1115–22.

    Article  PubMed  Google Scholar 

  21. Shah SR, Smith BT, Tatara AM, Molina ER, Lee EJ, Piepergerdes TC, et al. Effects of local antibiotic delivery from porous space maintainers on infection clearance and induction of an osteogenic membrane in an infected bone defect. Tissue Eng Part A. 2016. https://doi.org/10.1089/ten.tea.2016.0389.

    Article  Google Scholar 

  22. Toth Z, Roi M, Evans E, Watson JT, Nicolaou D, McBride-Gagyi S. Masquelet technique: effects of spacer material and micro-topography on factor expression and bone regeneration. Ann Biomed Eng. 2018. https://doi.org/10.1007/s10439-018-02137-5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weiss RE, Reddi AH. Appearance of fibronectin during the differentiation of cartilage, bone, and bone marrow. J Cell Biol. 1981;88(3):630–6.

    Article  CAS  PubMed  Google Scholar 

  24. Mauffrey C, Hake ME, Chadayammuri V, Masquelet AC. Reconstruction of Long Bone Infections Using the Induced Membrane Technique: tips and Tricks. J Orthop Trauma. 2016;30(6):e188–93. https://doi.org/10.1097/BOT.0000000000000500.

    Article  PubMed  Google Scholar 

  25. Olesen UK, Eckardt H, Bosemark P, Paulsen AW, Dahl B, Hede A. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases. Injury. 2015;46(Suppl 8):S44–7. https://doi.org/10.1016/s0020-1383(15)30054-1.

    Article  PubMed  Google Scholar 

  26. Gupta G, Ahmad S, Mohd Z, Khan AH, Sherwani MK, Khan AQ. Management of traumatic tibial diaphyseal bone defect by “induced-membrane technique”. Indian J Orthop. 2016;50(3):290–6. https://doi.org/10.4103/0019-5413.181780.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Azi ML, Teixeira AA, Cotias RB, Joeris A, Kfuri M Jr. Membrane induced osteogenesis in the management of posttraumatic bone defects. J Orthop Trauma. 2016;30(10):545–50. https://doi.org/10.1097/BOT.0000000000000614.

    Article  PubMed  Google Scholar 

  28. Morelli I, Drago L, George DA, Gallazzi E, Scarponi S, Romano CL. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury. 2016;47(Suppl 6):S68–76. https://doi.org/10.1016/S0020-1383(16)30842-7.

    Article  PubMed  Google Scholar 

  29. McEwan JK, Tribe HC, Jacobs N, Hancock N, Qureshi AA, Dunlop DG, et al. Regenerative medicine in lower limb reconstruction. Regen Med. 2018;13(4):477–90. https://doi.org/10.2217/rme-2018-0011.

    Article  CAS  PubMed  Google Scholar 

  30. Wong TM, Lau TW, Li X, Fang C, Yeung K, Leung F. Masquelet technique for treatment of posttraumatic bone defects. Scientific World J. 2014;2014:710302. https://doi.org/10.1155/2014/710302.

    Article  Google Scholar 

  31. Gouron R. Surgical technique and indications of the induced membrane procedure in children. Orthop Traumatol Surg Res. 2016;102(1 Suppl):S133–9. https://doi.org/10.1016/j.otsr.2015.06.027.

    Article  CAS  PubMed  Google Scholar 

  32. Mauffrey C, Giannoudis PV, Conway JD, Hsu JR, Masquelet AC. Masquelet technique for the treatment of segmental bone loss have we made any progress? Injury. 2016;47(10):2051–2. https://doi.org/10.1016/j.injury.2016.09.018.

    Article  PubMed  Google Scholar 

  33. Gruber HE, Ode G, Hoelscher G, Ingram J, Bethea S, Bosse MJ. Osteogenic, stem cell and molecular characterisation of the human induced membrane from extremity bone defects. Bone Joint Res. 2016;5(4):106–15. https://doi.org/10.1302/2046-3758.54.2000483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Assal M, Stern R. The Masquelet procedure gone awry. Orthopedics. 2014;37(11):e1045–8. https://doi.org/10.3928/01477447-20141023-93.

    Article  PubMed  Google Scholar 

  35. Masquelet AC. Induced membrane technique: pearls and pitfalls. J Orthop Trauma. 2017;31(Suppl 5):S36–8. https://doi.org/10.1097/BOT.0000000000000979.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Fiona Ecarnot (EA3920, University Hospital Besancon, France) and Joanne Archambault, PhD for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florelle Gindraux.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Additional information

The original version of this article was revised: The presentation and legends of Figs. 4 and 5 were incorrect. The original article has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gindraux, F., Loisel, F., Bourgeois, M. et al. Induced membrane maintains its osteogenic properties even when the second stage of Masquelet’s technique is performed later. Eur J Trauma Emerg Surg 46, 301–312 (2020). https://doi.org/10.1007/s00068-019-01184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-019-01184-4

Keywords

Navigation