Skip to main content
Log in

Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy

Radiomics-Analyse von Planungs-Computertomogrammen zur Vorhersage von strahleninduzierter Lungenschädigung und onkologischem Ergebnis bei Lungenkrebspatienten nach robotischer stereotaktischer Strahlentherapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Objectives

To predict radiation-induced lung injury and outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT) from radiomic features of the primary tumor.

Methods

In all, 110 patients with primary stage I/IIa NSCLC were analyzed for local control (LC), disease-free survival (DFS), overall survival (OS) and development of local lung injury up to fibrosis (LF). First-order (histogram), second-order (GLCM, Gray Level Co-occurrence Matrix) and shape-related radiomic features were determined from the unprocessed or filtered planning CT images of the gross tumor volume (GTV), subjected to LASSO (Least Absolute Shrinkage and Selection Operator) regularization and used to construct continuous and dichotomous risk scores for each endpoint.

Results

Continuous scores comprising 1–5 histogram or GLCM features had a significant (p = 0.0001–0.032) impact on all endpoints that was preserved in a multifactorial Cox regression analysis comprising additional clinical and dosimetric factors. At 36 months, LC did not differ between the dichotomous risk groups (93% vs. 85%, HR 0.892, 95%CI 0.222–3.590), while DFS (45% vs. 17%, p < 0.05, HR 0.457, 95%CI 0.240–0.868) and OS (80% vs. 37%, p < 0.001, HR 0.190, 95%CI 0.065–0.556) were significantly lower in the high-risk groups. Also, the frequency of LF differed significantly between the two risk groups (63% vs. 20% at 24 months, p < 0.001, HR 0.158, 95%CI 0.054–0.458).

Conclusion

Radiomic analysis of the gross tumor volume may help to predict DFS and OS and the development of local lung fibrosis in early stage NSCLC patients treated with stereotactic radiotherapy.

Zusammenfassung

Ziel

Vorhersage von pulmonaler Toxizität und onkologischem Ergebnis aus Radiomics-Merkmalen des Primärtumors bei Patienten mit nicht-kleinzelligem Bronchialkarzinom (NSCLC), die mittels robotischer stereotaktischer Strahlentherapie (SBRT) behandelt wurden.

Methoden

Insgesamt 110 Patienten mit NSCLC im Stadium I/IIa wurden bzgl. lokaler Kontrolle (LC), krankheitsfreiem Überleben (DFS), Gesamtüberleben (OS) und Entwicklung einer lokalen Lungenfibrose (LF) untersucht. Merkmale erster Ordnung (Histogramm), zweiter Ordnung (GLCM, Gray-Level Co-Occurence Matrix) und formbezogene Merkmale wurden aus den unverarbeiteten oder gefilterten Planungs-CT-Bildern des makroskopischen Tumorvolumens (GTV) bestimmt, mittels LASSO (Least Absolute Shrinkage and Selection Operator) regularisiert und für die Konstruktion von kontinuierlichen und dichotomen Risikoscores für jeden Endpunkt verwendet.

Ergebnisse

Kontinuierliche Scores aus 1–5 Histogramm- oder GLCM-Merkmalen hatten einen signifikanten Einfluss auf alle Endpunkte (p = 0,0001–0,032), der in einer multifaktoriellen Cox-Regressionsanalyse mit zusätzlichen klinischen und dosimetrischen Faktoren erhalten blieb. Nach 36 Monaten unterschied sich die LC nicht zwischen den dichotomen Risikogruppen (93% vs. 85%; HR 0,892; 95%-KI 0,222–3,590), während das DFS (45% vs. 17%; p < 0,05; HR 0,457; 95%-KI 0,240–0,868) und das OS (80% vs. 37%; p < 0,001; HR 0,190; 95%-KI 0,065–0,556) in den Hochrisikogruppen signifikant schlechter waren. Auch die Häufigkeit von LF unterschied sich signifikant zwischen den beiden Risikogruppen (63% gegenüber 20% nach 24 Monaten, p < 0,001; HR 0,158; 95%-KI 0,054–0,458).

Schlussfolgerung

Die Radiomics-Analyse des GTV aus dem Planungs-CT kann zur Vorhersage der Prognose und zur Einschätzung des Risikos der Entwicklung einer lokalen Lungenfibrose nach stereotaktischer Bestrahlung von Bronchialkarzinomen beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peeken JC, Nusslin F, Combs SE (2017) “Radio-oncomics” : The potential of radiomics in radiation oncology. Strahlenther Onkol 193:767–779

    Article  PubMed  Google Scholar 

  2. Peeken JC, Hesse J, Haller B, Kessel KA, Nusslin F, Combs SE (2018) Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients. Strahlenther Onkol 194:580–590

    Article  PubMed  Google Scholar 

  3. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  5. Pinker K, Shitano F, Sala E et al (2017) Background, current role, and potential applications of radiogenomics. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25870

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM (2017) The rise of Radiomics and implications for oncologic management. J Natl Cancer Inst 109(7). https://doi.org/10.1093/jnci/djx055

    Article  PubMed  Google Scholar 

  7. Abrol S, Kotrotsou A, Salem A, Zinn PO, Colen RR (2017) Radiomic Phenotyping in brain cancer to unravel hidden information in medical images. Top Magn Reson Imaging 26:43–53

    PubMed  Google Scholar 

  8. Braman NM, Etesami M, Prasanna P et al (2017) Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 19:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katsila T, Matsoukas MT, Patrinos GP, Kardamakis D (2017) Pharmacometabolomics informs quantitative Radiomics for Glioblastoma diagnostic innovation. OMICS 21:429–439

    Article  CAS  PubMed  Google Scholar 

  10. Lopez CJ, Nagornaya N, Parra NA et al (2017) Association of Radiomics and metabolic tumor volumes in radiation treatment of Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys 97:586–595

    Article  PubMed  Google Scholar 

  11. Parekh VS, Jacobs MA (2017) Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A (2016) Radiomics based targeted radiotherapy planning (Rad-TRaP): A computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 11:148

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vallieres M, Kay-Rivest E, Perrin LJ et al (2017) Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-10371-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang Y, Liu Z, He L et al (2016) Radiomics signature: A potential Biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 281:947–957

    Article  PubMed  Google Scholar 

  15. Huang YQ, Liang CH, He L et al (2016) Development and validation of a Radiomics nomogram for preoperative prediction of lymph node metastasis in Colorectal cancer. J Clin Oncol 34:2157–2164

    Article  PubMed  Google Scholar 

  16. Coroller TP, Agrawal V, Huynh E et al (2017) Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC. J Thorac Oncol 12:467–476

    Article  PubMed  Google Scholar 

  17. Coroller TP, Agrawal V, Narayan V et al (2016) Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother Oncol 119:480–486

    Article  PubMed  PubMed Central  Google Scholar 

  18. Coroller TP, Grossmann P, Hou Y et al (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grove O, Berglund AE, Schabath MB et al (2015) Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS ONE 10(3):e118261. https://doi.org/10.1371/journal.pone.0118261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee G, Lee HY, Park H et al (2017) Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art. Eur J Radiol 86:297–307

    Article  PubMed  Google Scholar 

  21. Postmus PE, Kerr KM, Oudkerk M et al (2017) Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 28(suppl_4):iv1–iv21. https://doi.org/10.1093/annonc/mdx222

    Article  CAS  PubMed  Google Scholar 

  22. Folkert MR, Timmerman RD (2017) Stereotactic ablative body radiosurgery (SABR) or Stereotactic body radiation therapy (SBRT). Adv Drug Deliv Rev 109:3–14

    Article  CAS  PubMed  Google Scholar 

  23. Ma L, Wang L, Tseng CL, Sahgal A (2017) Emerging technologies in stereotactic body radiotherapy. Chin Clin Oncol 6(S2):S12. https://doi.org/10.21037/cco.2017.06.19

    Article  PubMed  Google Scholar 

  24. Maquilan G, Timmerman R (2016) Stereotactic body radiation therapy for early-stage lung cancer. Cancer J 22:274–279

    Article  PubMed  Google Scholar 

  25. Videtic GMM, Donington J, Giuliani M et al (2017) Stereotactic body radiation therapy for early-stage non-small cell lung cancer: Executive summary of an ASTRO evidence-based guideline. Pract Radiat Oncol 7:295–301

    Article  PubMed  Google Scholar 

  26. Guckenberger M, Andratschke N, Dieckmann K et al (2017) ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol 124:11–17

    Article  PubMed  Google Scholar 

  27. Guckenberger M, Klement RJ, Allgauer M et al (2016) Local tumor control probability modeling of primary and secondary lung tumors in stereotactic body radiotherapy. Radiother Oncol 118:485–491

    Article  PubMed  Google Scholar 

  28. Grossmann P, Stringfield O, El-Hachem N et al (2017) Defining the biological basis of radiomic phenotypes in lung cancer. Elife 6:e23421. https://doi.org/10.7554/elife.23421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Temming S, Kocher M, Stoelben E et al (2018) Risk-adapted robotic stereotactic body radiation therapy for inoperable early-stage non-small-cell lung cancer. Strahlenther Onkol 194:91–97

    Article  PubMed  Google Scholar 

  30. Shaw E, Kline R, Gillin M et al (1993) Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys 27:1231–1239

    Article  CAS  PubMed  Google Scholar 

  31. Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93(Suppl 3):219–222

    Article  PubMed  Google Scholar 

  32. Baumann R, Chan MKH, Pyschny F et al (2018) Clinical results of mean GTV dose optimized Robotic-guided Stereotactic body radiation therapy for lung tumors. Front Oncol 8:171

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stera S, Balermpas P, Chan MKH et al (2018) Breathing-motion-compensated robotic guided stereotactic body radiation therapy : Patterns of failure analysis. Strahlenther Onkol 194:143–155

    Article  PubMed  Google Scholar 

  34. Kimura T, Matsuura K, Murakami Y et al (2006) CT appearance of radiation injury of the lung and clinical symptoms after stereotactic body radiation therapy (SBRT) for lung cancers: Are patients with pulmonary emphysema also candidates for SBRT for lung cancers? Int J Radiat Oncol Biol Phys 66:483–491

    Article  PubMed  Google Scholar 

  35. Palma DA, Senan S, Haasbeek CJ, Verbakel WF, Vincent A, Lagerwaard F (2011) Radiological and clinical pneumonitis after stereotactic lung radiotherapy: A matched analysis of three-dimensional conformal and volumetric-modulated arc therapy techniques. Int J Radiat Oncol Biol Phys 80:506–513

    Article  PubMed  Google Scholar 

  36. Kalman NS, Hugo GD, Kahn JM et al (2018) Interobserver reliability in describing radiographic lung changes after stereotactic body radiation therapy. Adv Radiat Oncol 3(4):655–661. https://doi.org/10.1016/j.adro.2018.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zwanenburg A, Leger S, Vallières M, Loeck S (2017) Image biomarker standardisation initiative. https://arxiv.org/abs/1612.07003

    Google Scholar 

  38. Molina D, Perez-Beteta J, Martinez-Gonzalez A et al (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57

    Article  PubMed  Google Scholar 

  39. He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z (2016) Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 6(1). https://doi.org/10.1038/srep34921

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mattonen SA, Palma DA, Johnson C et al (2016) Detection of local cancer recurrence after Stereotactic ablative radiation therapy for lung cancer: Physician performance versus Radiomic assessment. Int J Radiat Oncol Biol Phys 94:1121–1128

    Article  PubMed  Google Scholar 

  41. Mattonen SA, Tetar S, Palma DA, Louie AV, Senan S, Ward AD (2015) Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. J Med Imaging (bellingham) 2(4). https://doi.org/10.1117/1.jmi.2.4.041010

    Article  Google Scholar 

  42. Moran A, Daly ME, Yip SSF, Yamamoto T (2017) Radiomics-based assessment of radiation-induced lung injury after Stereotactic body radiotherapy. Clin Lung Cancer 18:e425–e431

    Article  CAS  PubMed  Google Scholar 

  43. Huynh E, Coroller TP, Narayan V et al (2016) CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol 120:258–266

    Article  PubMed  Google Scholar 

  44. Huynh E, Coroller TP, Narayan V et al (2017) Associations of Radiomic data extracted from static and respiratory-gated CT scans with disease recurrence in lung cancer patients treated with SBRT. PLoS ONE 12(1). https://doi.org/10.1371/journal.pone.0169172

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jager KJ, van Dijk PC, Zoccali C, Dekker FW (2008) The analysis of survival data: The Kaplan-Meier method. Kidney Int 74:560–565

    Article  PubMed  Google Scholar 

  46. Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw 39:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  CAS  PubMed  Google Scholar 

  48. Brentnall AR, Cuzick J (2016) Use of the concordance index for predictors of censored survival data. Stat Methods Med Res. https://doi.org/10.1177/0962280216680245:962280216680245

    Article  PubMed  PubMed Central  Google Scholar 

  49. Deasy JO, Bentzen SM, Jackson A et al (2010) Improving normal tissue complication probability models: The need to adopt a “data-pooling” culture. Int J Radiat Oncol Biol Phys 76(3):S151–S154. https://doi.org/10.1016/j.ijrobp.2009.06.094

    Article  PubMed  PubMed Central  Google Scholar 

  50. Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533:452–454

    Article  CAS  PubMed  Google Scholar 

  51. Choi W, Oh JH, Riyahi S et al (2018) Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys. https://doi.org/10.1002/mp.12820

    Article  PubMed  PubMed Central  Google Scholar 

  52. Constanzo J, Wei L, Tseng HH, El Naqa I (2017) Radiomics in precision medicine for lung cancer. Transl Lung Cancer Res 6:635–647

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fave X, Mackin D, Yang J et al (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fave X, Zhang L, Yang J et al (2017) Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep 7:588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalpathy-Cramer J, Mamomov A, Zhao B et al (2016) Radiomics of lung nodules: A multi-institutional study of robustness and agreement of quantitative imaging features. Tomography 2:430–437

    Article  PubMed  PubMed Central  Google Scholar 

  56. Larue RTHM, Van De Voorde L, van Timmeren JE et al (2017) 4DCT imaging to assess radiomics feature stability: An investigation for thoracic cancers. Radiother Oncol 125:147–153

    Article  PubMed  Google Scholar 

  57. Li Q, Kim J, Balagurunathan Y et al (2017) Imaging features from pretreatment CT scans are associated with clinical outcomes in nonsmall-cell lung cancer patients treated with stereotactic body radiotherapy. Med Phys 44:4341–4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Q, Kim J, Balagurunathan Y et al (2017) CT imaging features associated with recurrence in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiat Oncol 12:158

    Article  PubMed  PubMed Central  Google Scholar 

  59. Takeda K, Takanami K, Shirata Y et al (2017) Clinical utility of texture analysis of 18F-FDG PET/CT in patients with Stage I lung cancer treated with stereotactic body radiotherapy. J Radiat Res 58(6):862–869. https://doi.org/10.1093/jrr/rrx050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin P (2017) Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol 56(11):1537–1543. https://doi.org/10.1080/0284186x.2017.1350285

    Article  PubMed  Google Scholar 

  61. van Timmeren JE, Leijenaar RTH, van Elmpt W et al (2017) Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol 123:363–369

    Article  PubMed  Google Scholar 

  62. Yu W, Tang C, Hobbs BP et al (2017) Development and validation of a predictive Radiomics model for clinical outcomes in stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2017.10.046

    Article  PubMed  Google Scholar 

  63. Zhang Y, Oikonomou A, Wong A, Haider MA, Khalvati F (2017) Radiomics-based prognosis analysis for non-small cell lung cancer. Sci Rep 7(1). https://doi.org/10.1038/srep46349

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhu X, Dong D, Chen Z et al (2018) Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur Radiol. https://doi.org/10.1007/s00330-017-5221-1

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wu W, Parmar C, Grossmann P et al (2016) Exploratory study to identify Radiomics classifiers for lung cancer histology. Front Oncol 6:71

    PubMed  PubMed Central  Google Scholar 

  66. Tsoutsou PG, Koukourakis MI (2006) Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66:1281–1293

    Article  PubMed  Google Scholar 

  67. Wang S, Campbell J, Stenmark MH et al (2017) Plasma levels of IL-8 and TGF-beta1 predict radiation-induced lung toxicity in non-small cell lung cancer: A validation study. Int J Radiat Oncol Biol Phys 98:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guckenberger M, Klement RJ, Kestin LL et al (2013) Lack of a dose-effect relationship for pulmonary function changes after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85:1074–1081

    Article  PubMed  Google Scholar 

  69. Balagurunathan Y, Gu Y, Wang H et al (2014) Reproducibility and prognosis of quantitative features extracted from CT images. Transl Oncol 7:72–87

    Article  PubMed  PubMed Central  Google Scholar 

  70. Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and Reproducibility of Radiomic features: A systematic review. Int J Radiat Oncol Biol Phys 102:1143–1158

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhao B, Tan Y, Tsai WY et al (2016) Reproducibility of radiomics for deciphering tumor phenotype with imaging. Sci Rep 6(1). https://doi.org/10.1038/srep23428

    Article  PubMed  PubMed Central  Google Scholar 

  72. de Oliveira MS, Balthazar ML, D’Abreu A et al (2011) MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. Ajnr Am J Neuroradiol 32:60–66

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kocher.

Ethics declarations

Conflict of interest

K. Bousabarah, S. Temming, M. Hoevels, J. Borggrefe, W.W. Baus, D. Ruess, V. Visser-Vandewalle, M. Ruge, M. Kocher and H. Treuer declare that they have no competing interests.

Ethical standards

This retrospective study was approved by the Ethics Committee of the Medical Faculty, University of Cologne, protocol number 17-009.

Additional information

Martin Kocher and Harald Treuer contributed equally to last authorship.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousabarah, K., Temming, S., Hoevels, M. et al. Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy. Strahlenther Onkol 195, 830–842 (2019). https://doi.org/10.1007/s00066-019-01452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01452-7

Keywords

Schlüsselwörter

Navigation