Skip to main content
Log in

SBRT planning for spinal metastasis: indications from a large multicentric study

SBRT-Planung bei Wirbelsäulenmetastasen: Indikationen aus einer großen Multizenterstudie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The dosimetric variability in spine stereotactic body radiation therapy (SBRT) planning was investigated in a large number of centres to identify crowd knowledge-based solutions.

Methods

Two spinal cases were planned by 48 planners (38 centres). The required prescription dose (PD) was 3 × 10 Gy and the planning target volume (PTV) coverage request was: VPD > 90% (minimum request: VPD > 80%). The dose constraints were: planning risk volume (PRV) spinal cord: V18Gy < 0.35 cm3, V21.9 Gy < 0.03 cm3; oesophagus: V17.7 Gy < 5 cm3, V25.2 Gy < 0.03 cm3. Planners who did not fulfil the protocol requirements were asked to re-optimize the plans, using the results of planners with the same technology. Statistical analysis was performed to assess correlations between dosimetric results and planning parameters. A quality index (QI) was defined for scoring plans.

Results

In all, 12.5% of plans did not meet the protocol requirements. After re-optimization, 98% of plans fulfilled the constraints, showing the positive impact of knowledge sharing. Statistical analysis showed a significant correlation (p < 0.05) between the homogeneity index (HI) and PTV coverage for both cases, while the correlation between HI and spinal cord sparing was significant only for the single dorsal PTV case. Moreover, the multileaf collimator leaf thickness correlated with the spinal cord sparing. Planners using comparable delivery/planning system techniques produced different QI, highlighting the impact of the planner’s skills in the optimization process.

Conclusion

Both the technology and the planner’s skills are fundamentally important in spine SBRT planning optimization. Knowledge sharing helped to follow the plan objectives.

Zusammenfassung

Hintergrund

Die dosimetrische Variabilität in der Bestrahlungsplanung der spinalen stereotaktischen Körperstamm-Strahlentherapie (SBRT) wurde in einer großen Anzahl von Kliniken untersucht, um eine Gruppenwissen-abhängige Lösung zu finden.

Methoden

Zwei spinale Behandlungsfälle wurden von 48 Planern (38 Kliniken) geplant. Die geforderte verschriebene Dosis (VD) lag bei 3 × 10 Gy, und die zu erreichende PTV-Abdeckung bei VVD > 90 % (minimale Anforderung: VVD > 80 %). Die Dosislimitierungen waren: „PRV spinal cord“: V18Gy < 0,35 cm3, V21.9 Gy < 0,03 cm3; „oesophagus“: V17.7 Gy < 5 cm3, V25.2 Gy < 0,03 cm3. Planer, die die Protokollanforderungen nicht erfüllten, wurden gebeten, die Pläne unter Verwendung der Ergebnisse von Planern mit der gleichen Technologie erneut zu optimieren. Eine statistische Analyse wurde durchgeführt, um die Korrelation zwischen dosimetrischen Ergebnissen und Planungsparametern zu untersuchen. Ein Qualitätsindex (QI) wurde festgelegt, um das Abschneiden der Pläne zu bestimmen.

Ergebnisse

Insgesamt 12,5 % der Pläne haben die Protokollanforderungen nicht erfüllt. Nach Reoptimierung erfüllten 98 % der Pläne die Bedingungen, was den positiven Einfluss des Wissensaustauschs zeigte. Die statistische Analyse zeigte in beiden Fällen eine signifikante Korrelation (p < 0,05) zwischen Homogenitätsindex (HI) und PTV-Abdeckung, während die Korrelation zwischen HI und Rückenmarkschonung nur für den einzelnen dorsalen PTV-Fall signifikant war. Darüber hinaus korrelierte die MLC-Blattdicke mit der Schonung des Rückenmarks. Planer, die vergleichbare Bestrahlungs‑/Planungssystem-Techniken nutzen, produzierten unterschiedliche QI, was den Einfluss der Erfahrungen des Planers im Optimierungsprozess verdeutlichte.

Schlussfolgerung

Sowohl die Technologie als auch die Erfahrungen des Planers sind für die Optimierung der spinalen SBRT-Planung äußerst wichtig. Der Wissensaustausch half dabei, die Planungsbedingungen erfüllen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101

    Article  PubMed  Google Scholar 

  2. Moore KL, Brame RS, Low DA et al (2012) Quantitative metrics for assessing plan quality. Semin Radiat Oncol 22(1):62–69

    Article  PubMed  Google Scholar 

  3. Nelms BE, Robinson G, Markham J et al (2012) Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol 2(4):296–305

    Article  PubMed  Google Scholar 

  4. Das IJ, Andersen A, Chen ZJ et al (2017) State of dose prescription and compliance to international standard (ICRU-83) in intensity modulated radiation therapy among academic institutions. Pract Radiat Oncol 7(29):e145–e155

    Article  PubMed  Google Scholar 

  5. Song T, Li N, Zarepisheh M et al (2016) An automated treatment plan quality control tool for intensity-modulated radiation therapy using a voxel-weighting factor-based re-optimization algorithm. PLoS ONE 11(3):e149273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Good D, Lo J, Lee WR et al (2013) A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys 87(1):176–181

    Article  PubMed  Google Scholar 

  7. Voet PW, Dirkx ML, Breedveld S et al (2014) Fully automated volumetric modulated arc therapy plan generation for prostate cancer patients. Int J Radiat Oncol Biol Phys 88:1175–1179

    Article  PubMed  Google Scholar 

  8. Hazell I, Bzdusek K, Kumar P et al (2016) Automatic planning of head and neck treatment plans. J Appl Clin Med Phys 17(1):272–282

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu B, Kusters M, Kunze-busch M et al (2017) Cross-institutional knowledge-based planning (KBP) implementation and its performance comparison to auto-planning engine (APE). Radiother Oncol 123(1):57–62

    Article  PubMed  Google Scholar 

  10. Guckenberger M, Sweeney RA, Flickinger JC et al (2011) Clinical practice of image-guided spine radiosurgery—results from an international research consortium. Radiat Oncol 6(1):172

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ahmed KA, Stauder MC, Miller RC et al (2012) Stereotactic body radiation therapy in spinal metastases. Int J Radiat Oncol Biol Phys 82(5):e803–e809

    Article  PubMed  Google Scholar 

  12. Ryu S, James JL, Gerszten PC et al (2013) RTOG 0631 phase II/III study of image-guided stereotactic radiosurgery/SBRT for localized spine metastases: phase II results. J Radiosurg SBRT 2:176–177

    Google Scholar 

  13. Descovich M, Carrara M, Morlino S et al (2013) Improving plan quality and consistency by standardization of dose constraints in prostate cancer patients treated with Cyberknife. J Appl Clin Med Phys 14(5):162–172

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cox BW, Spratt DE, Lovelock M et al (2012) International Spine Radiosurgery Consortium Consensus Guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597–e605

    Article  PubMed  Google Scholar 

  15. Papanikolaou N, Battista JJ, Boyer AL et al (2004) Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Rep 85:1–142

    Google Scholar 

  16. The International Commission on Radiation Units and Measurements (2014) Report 91. Journal of the International Commission on Radiation Units and Measurements, vol 14, pp 1–160

    Google Scholar 

  17. Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):313–330

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mancosu P, Esposito M, Giglioli F et al (2017) Time for crowd knowledge-based approach in SBRT planning. Strahlenther Onkol 193(12):1066–1067. https://doi.org/10.1007/s00066-017-1214-x

    Article  PubMed  Google Scholar 

  19. Schiff PB (2017) Dose dissonance in radiation oncology: consensus needed when prescribing dose in radiation therapy. Pract Radiat Oncol 7(2):e145–e155

    Article  Google Scholar 

  20. Giglioli FR, Strigari L, Ragona R et al (2016) Lung stereotactic ablative body radiotherapy: a large scale multi-institutional planning comparison for interpreting results of multi-institutional studies. Phys Med 32(4):600–606

    Article  PubMed  Google Scholar 

  21. Giglioli FR, Clemente S, Esposito M et al (2017) Frontiers in planning optimization for lung SBRT. Phys Med 2017(44):163–170. https://doi.org/10.1016/j.ejmp.2017.05.064

    Article  Google Scholar 

  22. Esposito M, Maggi G, Marino C et al (2016) Multicentre treatment planning inter-comparison in a national context: the liver stereotactic ablative radiotherapy case. Phys Med 32(1):277–283

    Article  PubMed  Google Scholar 

  23. Fleckenstein J, Boda-Heggemann J, Siebenlist K et al (2018) Non-coplanar VMAT combined with non-uniform dose prescription markedly reduces lung dose in breath-hold lung SBRT. Strahlenther Onkol. https://doi.org/10.1007/s00066-018-1316-0

    Article  PubMed  Google Scholar 

  24. Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO working group stereotactic radiotherapy. Strahlenther Onkol 193(10):780–790. https://doi.org/10.1007/s00066-017-1151-8

    Article  PubMed  Google Scholar 

  25. Yang J, Ma L, Wang XS et al (2016) Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim 41(2):105–112

    Article  PubMed  Google Scholar 

  26. Nalichowski A, Kaufman I, Gallo J et al (2017) Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 18(1):164–169. https://doi.org/10.1002/acm2.12022

    Article  PubMed  Google Scholar 

  27. Moustakis C, Chan MKH, Kim J et al (2018) Treatment planning for spinal radiosurgery. A competitive multiplatform benchmark challenge. Strahlenther Onkol 194(9):843–854. https://doi.org/10.1007/s00066-018-1314-2

    Article  PubMed  Google Scholar 

  28. Buergy D, Sharfo AWM, Heijmen BJ et al (2017) Fully automated treatment planning of spinal metastases—a comparison to manual planning of volumetric modulated arc therapy for conventionally fractionated irradiation. Radiat Oncol 12(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marino C, Villaggi E, Maggi G et al (2015) A feasibility dosimetric study on prostate cancer. Are we ready for a multicenter clinical trial on SBRT? Strahlenther Onkol 191(7):573–581

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Miss Verlie Jones, dosimetrist at the European Institute of Oncology, for her editorial assistance in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Esposito PhD.

Ethics declarations

Conflict of interest

M. Esposito, L. Masi, M. Zani, R. Doro, D. Fedele, C. Garibaldi, S. Clemente, C. Fiandra, F.R. Giglioli, C. Marino, L. Orsingher, S. Russo, M. Stasi, L. Strigari, E. Villaggi and P. Mancosu declare that they have no competing interests.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, M., Masi, L., Zani, M. et al. SBRT planning for spinal metastasis: indications from a large multicentric study. Strahlenther Onkol 195, 226–235 (2019). https://doi.org/10.1007/s00066-018-1383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1383-2

Keywords

Schlüsselwörter

Navigation