Skip to main content

Advertisement

Log in

Systematic Evaluation of Low-dose MDCT for Planning Purposes of Lumbosacral Periradicular Infiltrations

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate image quality and confidence for planning of periradicular infiltrations using virtually lowered tube currents and in-house developed iterative reconstruction (IR) for multidetector computed tomography (MDCT).

Methods

A total of 20 patients (mean age 54.9 ± 13.1 years) underwent MDCT for planning purposes of periradicular infiltrations at the lumbosacral spine (120 kVp and 100 mAs). Planning scans were simulated as if they were performed at 50% (D50), 10% (D10), 5% (D5), and 1% (D1) of the tube current of original scanning. Image reconstruction was achieved with two levels of IR (A: similar in appearance to clinical reconstructions, B: 10 times stronger noise reduction). Qualitative image evaluation was performed by two readers (R1 and R2) considering overall image quality and artifacts, image contrast, determination of nerve root, and confidence for intervention planning (scoring: 1 high, 2 medium, and 3 low confidence).

Results

Level A of IR was favorable regarding overall image quality, artifacts, image contrast, and nerve root depiction according to both readers, with preserved good to excellent scores down to D10 scans. The confidence for intervention planning was not significantly different (p > 0.05) between scans with tube currents virtually lowered down to 10% as compared to the original scans when using level A of IR (R1: 1.2 ± 0.4, R2: 1.1 ± 0.3). Inter-reader agreement for planning confidence was good to excellent (range of weighted Cohen’s kappa: 0.62–1.00).

Conclusion

The use of MDCT for planning purposes of lumbosacral periradicular infiltrations may be possible with tube currents lowered down to 10% of standard dose (equal to 10 mAs) without limitations in planning confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALARA:

As low as reasonably achievable

CTDIvol :

Volumetric CT dose index

FOV:

Field of view

HU:

Hounsfield Units

IR:

Iterative reconstruction

MDCT:

Multidetector computed tomography

PACS:

Picture archiving and communication system

R1:

Reader 1

R2:

Reader 2

SD:

Standard deviation

References

  1. Karppinen J, Malmivaara A, Kurunlahti M, Kyllönen E, Pienimäki T, Nieminen P, Ohinmaa A, Tervonen O, Vanharanta H.. Periradicular infiltration for sciatica: a randomized controlled trial. Spine (Phila Pa 1976). 2001;26:1059–67.

    Article  CAS  PubMed  Google Scholar 

  2. Andreula C, Muto M, Leonardi M. Interventional spinal procedures. Eur J Radiol. 2004;50:112–9.

    Article  PubMed  Google Scholar 

  3. Palmer WE. Spinal injections for pain management. Radiology. 2016;281:669–88.

    Article  PubMed  Google Scholar 

  4. Waggershauser T, Schwarzkopf S, Reiser M. Facet blockade, peridural and periradicular pain therapy. Radiologe. 2006;46:520–6.

    Article  CAS  PubMed  Google Scholar 

  5. Seibel RM. Image-guided minimally invasive therapy. Surg Endosc. 1997;11:154–62.

    Article  CAS  PubMed  Google Scholar 

  6. Cyteval C, Thomas E, Decoux E, Sarrabere MP, Cottin A, Blotman F, Taourel P. Cervical radiculopathy: open study on percutaneous periradicular foraminal steroid infiltration performed under CT control in 30 patients. AJNR Am J Neuroradiol. 2004;25:441–5.

    PubMed  PubMed Central  Google Scholar 

  7. Deml MC, Buhr M, Wimmer MD, Pflugmacher R, Riedel R, Rommelspacher Y, Kabir K. CT-guided infiltration saves surgical intervention and fastens return to work compared to anatomical landmark-guided infiltration in patients with lumbosciatica. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S177–82.

    Article  PubMed  Google Scholar 

  8. Yang K, Ganguli S, DeLorenzo MC, Zheng H, Li X, Liu B. Procedure-specific CT dose and utilization factors for CT-guided interventional procedures. Radiology. 2018;289:150–7.

    Article  PubMed  Google Scholar 

  9. Guberina N, Forsting M, Ringelstein A, Suntharalingam S, Nassenstein K, Theysohn J, Wetter A. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses. Eur Radiol. 2018;28:3929–35.

    Article  PubMed  Google Scholar 

  10. Schauberger JS, Kranz PG, Choudhury KR, Eastwood JD, Gray L, Hoang JK. CT-guided lumbar nerve root injections: Are we using the correct radiation dose settings? AJNR Am J Neuroradiol. 2012;33:1855–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  12. Richards PJ, George J. Diagnostic CT radiation and cancer induction. Skeletal Radiol. 2010;39:421–4.

    Article  PubMed  Google Scholar 

  13. Bevelacqua JJ. Practical and effective ALARA. Health Phys. 2010;98(Suppl 2):S39–47.

    Article  CAS  PubMed  Google Scholar 

  14. Prasad KN, Cole WC, Haase GM. Radiation protection in humans: extending the concept of As Low As Reasonably Achievable (ALARA) from dose to biological damage. Br J Radiol. 2004;77:97–9.

    Article  CAS  PubMed  Google Scholar 

  15. Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schilham AM. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol. 2013;23:1623–31.

    Article  PubMed  Google Scholar 

  16. Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, Budde RP. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol. 2013;23:1632–42.

    Article  PubMed  Google Scholar 

  17. Willemink MJ, Noel PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185–95.

    Article  PubMed  Google Scholar 

  18. Shpilberg KA, Delman BN, Tanenbaum LN, Esses SJ, Subramaniam R, Doshi AH. Radiation dose reduction in CT-guided spine biopsies does not reduce diagnostic yield. AJNR Am J Neuroradiol. 2014;35:2243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Artner J, Cakir B, Weckbach S, Reichel H, Lattig F. Radiation dose reduction in CT-guided periradicular injections in lumbar spine: feasibility of a new institutional protocol for improved patient safety. Patient Saf Surg. 2012;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Artner J, Lattig F, Reichel H, Cakir B. Effective radiation dose reduction in computed tomography-guided spinal injections: a prospective, comparative study with technical considerations. Orthop Rev (Pavia). 2012;4:e24.

    Article  Google Scholar 

  21. Elsholtz FHJ, Schaafs LA, Köhlitz T, Hamm B, Niehues SM. Periradicular infiltration of the lumbar spine: testing the robustness of an interventional ultra-low-dose protocol at different body mass index levels. Acta Radiol. 2017;58:1364–70.

    Article  PubMed  Google Scholar 

  22. Elsholtz FHJ, Schaafs LA, Erxleben C, Hamm B, Niehues SM. Periradicular infiltration of the lumbar spine: Is iterative reconstruction software necessary to establish ultra-low-dose protocols? A quantitative and qualitative approach. Radiol Med. 2018;123:827–32.

    Article  PubMed  Google Scholar 

  23. Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol. 2017;27:5261–71.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muenzel D, Koehler T, Brown K, Zabić S, Fingerle AA, Waldt S, Bendik E, Zahel T, Schneider A, Dobritz M, Rummeny EJ, Noël PB. Validation of a low dose simulation technique for computed tomography images. Plos One. 2014;9:e107843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sollmann N, Mei K, Hedderich DM, Maegerlein C, Kopp FK, Löffler MT, Zimmer C, Rummeny EJ, Kirschke JS, Baum T, Noël PB. Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. Eur Radiol. 2019;29:3606–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sollmann N, Mei K, Schwaiger BJ, Gersing AS, Kopp FK, Bippus R, Maegerlein C, Zimmer C, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporos Int. 2018;29:2685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zabić S, Wang Q, Morton T, Brown KM. A low dose simulation tool for CT systems with energy integrating detectors. Med Phys. 2013;40:031102.

    Article  PubMed  Google Scholar 

  28. Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 1992;60:259–68.

    Article  Google Scholar 

  29. Chan TF, Shen J. Image processing and analysis: variational, PDE, wavelet, and Stochastic methods. Philadelphia: Society for Industrial and Applied Mathematics (SIAM); 2005.

    Book  Google Scholar 

  30. Fessler JA. Statistical image reconstruction methods for transmission tomography. In: Fitzpatrick JM, Sonka M, editors. Medical image processing and analysis. Handbook of medical imaging, Vol. 2. SPIE Publications; 2000. pp. 1–70.

  31. Kim D, Ramani S, Fessler JA. Combining ordered subsets and momentum for accelerated X‑ray CT image reconstruction. IEEE Trans Med Imaging. 2015;34:167–78.

    Article  PubMed  Google Scholar 

  32. Richards PJ, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine (Phila Pa 1976). 2010;35:430–3.

    Article  PubMed  Google Scholar 

  33. Mookiah MRK, Subburaj K, Mei K, Kopp FK, Kaesmacher J, Jungmann PM, Foehr P, Noel PB, Kirschke JS, Baum T. Multidetector computed tomography imaging: effect of sparse sampling and iterative reconstruction on trabecular bone microstructure. J Comput Assist Tomogr. 2018;42:441–7.

    Article  PubMed  Google Scholar 

  34. Artner J, Lattig F, Reichel H, Cakir B. Effective dose of CT-guided epidural and periradicular injections of the lumbar spine: a retrospective study. Open Orthop J. 2012;6:357–61.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nawfel RD, Judy PF, Silverman SG, Hooton S, Tuncali K, Adams DF. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology. 2000;216:180–4.

    Article  CAS  PubMed  Google Scholar 

  36. Rogits B1, Jungnickel K, Löwenthal D, Kropf S, Nekolla EA, Dudeck O, Pech M, Wieners G, Ricke J. Prospective evaluation of the radiologist’s hand dose in CT-guided interventions. Rofo. 2013;185:1081–8.

    Article  CAS  PubMed  Google Scholar 

  37. Dietrich TJ, Peterson CK, Zeimpekis KG, Bensler S, Sutter R, Pfirrmann CWA. Fluoroscopy-guided versus CT-guided Lumbar Steroid Injections: Comparison of Radiation Exposure and Outcomes. Radiology. 2019;290:752–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support through the University of Pennsylvania Research Foundation (URF) and Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Sollmann.

Ethics declarations

Conflict of interest

N. Sollmann, K. Mei, S. Schön, I. Riederer, F.K. Kopp, M.T. Löffler, M. Probst, E.J. Rummeny, C. Zimmer, J.S. Kirschke, P.B. Noël and T. Baum declare that they have no conflict of interest regarding the methods used or results presented in this study.

Ethical standards

All investigations described in this manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current revised form). Informed consent was obtained from the patient in this case if identifiable from images or other information within the manuscript. Ethics Committee Registration Number: 62/18 S

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sollmann, N., Mei, K., Schön, S. et al. Systematic Evaluation of Low-dose MDCT for Planning Purposes of Lumbosacral Periradicular Infiltrations. Clin Neuroradiol 30, 749–759 (2020). https://doi.org/10.1007/s00062-019-00844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00844-7

Keywords

Navigation