Skip to main content
Log in

MR Angiography at 3 Tesla to Assess Proximal Internal Carotid Artery Stenoses: Contrast-Enhanced or 3D Time-of-Flight MR Angiography?

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare the diagnostic accuracy of 3D time-of-flight (TOF-MRA) and contrast-enhanced (CE-MRA) magnetic resonance angiography at 3 T for detection and quantification of proximal high-grade stenosis using multidetector computed tomography angiography (MDCTA) as reference standard.

Methods

The institutional ethics committee approved this prospective study. A total of 41 patients suspected of having internal carotid artery (ICA) stenosis underwent both MDCTA and MRA. CE-MRA and TOF-MRA were performed using a 3.0-T imager with a dedicated eight-element cervical coil. ICA stenoses were measured according to the North American Symptomatic Carotid Endarterectomy Trial criteria and categorized as 0–25 % (minimal), 25–50 % (mild), 50–69 % (moderate), 70–99 % (high grade), and 100 % (occlusion). Sensitivity and specificity for the detection of high-grade ICA stenoses (70–99 %) and ICA occlusions were determined. In addition, intermodality agreement was assessed with κ-statistics for detection of high-grade ICA stenoses (70–99 %) and ICA occlusions.

Results

A total of 80 carotid arteries of 41 patients were reviewed. Two previously stented ICAs were excluded from analysis. On MDCTA, 7 ICAs were occluded, 12 ICAs presented with and 63 without a high-grade ICA stenosis (70–99 %). For detecting 70–99 % stenosis, both 3D TOF-MRA and CE-MRA were 91.7 % sensitive and 98.5 % specific, respectively. Both MRA techniques were highly sensitive (100 %), and specific (CE-MRA, 100 %; TOF-MRA, 98.7 %) for the detection of ICA occlusion. However, TOF-MRA misclassified one high-grade stenosis as occlusion. Intermodality agreement for detection of 70–99 % ICA stenoses was excellent between TOF-MRA and CE-MRA [κ = 0.902, 95 % confidence interval (CI) = 0.769–1.000], TOF-MRA and MDCTA (κ = 0.902, 95 % CI = 0.769–1.000), and CE-MRA and MDCTA (κ = 0.902, 95 % CI = 0.769–1.000).

Conclusion

Both 3D TOF-MRA and CE-MRA at 3 T are reliable tools for detecting high-grade proximal ICA stenoses (70–99 %). 3D TOF-MRA might misclassify pseudo-occlusions as complete occlusions. If there are no contraindications for CE-MRA, CE-MRA is recommended as primary MR imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CCA:

Common carotid artery

CE-MRA:

Contrast-enhanced magnetic resonance angiography

CI:

Confidence interval

CNR:

Contrast-to-noise ratio

DSA:

Digital subtraction angiography

GRAPPA:

Generalized Autocalibrating Partially Parallel Acquisition

HU:

Houndsfield Units

ICA:

Internal carotid artery

MDCTA:

Multidetector CTA

MIP:

Maximum Intensity Projection

NASCET:

North American Symptomatic Carotid Endarterectomy Trial

ROI:

Region of interest

SNR:

Signal-to-noise ratio

TOF-MRA:

Time-of-flight magnetic resonance angiography

References

  1. Debrey SM, Yu H, Lynch JK, Lövblad KO, Wright VL, Janket SJ, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis. Stroke. 2008;39:2237–48.

    Article  PubMed  Google Scholar 

  2. Barnett HJ, Taylor DW, Eliasziw M. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. NASCET Collaborators. N Engl J Med. 1998;339:1415–25.

    Article  CAS  PubMed  Google Scholar 

  3. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1991;325:445–53.

    Article  Google Scholar 

  4. MRC European Carotid Surgery Trial. Interim results for symptomatic patients with severe (70–99 %) or with mild (0–29 %) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet. 1991;337:1235–43.

    Article  Google Scholar 

  5. Eckstein HH, Kühnl A, Dörfler A, opp IB, Lawall H, Ringleb PA. Clinical practical guideline: the diagnosis, treatment, and follow-up of extracranial carotid stenosis—a multidisciplinary German-Austrian guideline based on evidence and consensus. Dtsch Arztebl Int. 2013;110:468–76.

    PubMed Central  PubMed  Google Scholar 

  6. Boehm G. Praeinterventionelle Diagnostik vor Karotisstenting. Z Gefässmed. 2008;5(4):12–20.

    Google Scholar 

  7. Jaff MR. Imaging the carotid bifurcation: toward standardization. Semin Vasc Surg. 2008;21:73–9.

    Article  PubMed  Google Scholar 

  8. Lanzino G, Tallarita T, Rabinstein AA. Internal carotid artery stenosis: natural history and management. Semin Neurol. 2010;30:518–27.

    Article  PubMed  Google Scholar 

  9. Saba L, Sanfilippo R, Pirisi R, Pascalis L, Montisci R, Mallarini G. Multidetector-row CT angiography in the study of atherosclerotic carotid arteries. Neuroradiology. 2007;49:623–37.

    Article  PubMed  Google Scholar 

  10. Yoon DY, You SY, Choi CS, Chang SK, Yun EJ, Seo YL, et al. Multi-detector row CT of the head and neck: comparison of different volumes of contrast material with and without a saline chaser. Neuroradiology. 2006;48:935–42.

    Article  PubMed  Google Scholar 

  11. Bartlett ES, Walters TD, Symons SP, Fox AJ. Carotid stenosis index revisited with direct CT angiography measurement of carotid arteries to quantify carotid stenosis. Stroke. 2007;38:286–91.

    Article  PubMed  Google Scholar 

  12. Borisch I, Boehme T, Butz B, Hamer OW, Feuerbach S, Zorger N. Screening for carotid injury in trauma patients: image quality of 16-detector-row computed tomography angiography. Acta Radiol. 2007;48:798–805.

    Article  CAS  PubMed  Google Scholar 

  13. de Monye C, de Weert TT, Zaalberg W, Cademartiri F, Siepman DA, Dippel DW, et al. Optimization of CT angiography of the carotid artery with a 16-MDCT scanner: craniocaudal scan direction reduces contrast material-related perivenous artifacts. AJR Am J Roentgenol. 2006;186:1737–45.

    Article  Google Scholar 

  14. Bartlett ES, Walters TD, Symons SP, Fox AJ. Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol. 2006;27:13–9.

    CAS  PubMed  Google Scholar 

  15. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB. Systematic review of CTA for assessment of carotid artery disease. Stroke. 2004;35:2306–12.

    Article  PubMed  Google Scholar 

  16. Lell M, Fellner C, Baum U, Hothorn T, Steiner R, Lang W, et al. Evaluation of carotid artery stenosis with multisection CT and MR imaging: influence of imaging modality and postprocessing. AJNR Am J Neuroradiol. 2007;28:104–10.

    CAS  PubMed  Google Scholar 

  17. Silvennoinen HM, Ikonen S, Soinne L, Railo M, Valanne L. CT angiographic analysis of carotid artery stenosis: comparison of manual assessment, semiautomatic vessel analysis, and digital subtraction angiography. AJNR Am J Neuroradiol. 2007;28:97–103.

    CAS  PubMed  Google Scholar 

  18. Hollingworth W, Nathens AB, Kanne JP, Crandall ML, Crummy TA, Hallam DK, et al. The diagnostic accuracy of computed tomography angiography for traumatic or atherosclerotic lesions of the carotid and vertebral arteries: a systematic review. Eur J Radiol. 2003;48:88–102.

    Article  PubMed  Google Scholar 

  19. Lell M, Anders K, Leidecker C, Lang W, Bautz W, Uder M. CTA of carotid artery with different scanner types. Radiologe. 2004;44:967–74.

    Article  CAS  PubMed  Google Scholar 

  20. Leclerc X, Godefroy O, Pruvo JP, Leys D. Computed tomographix angiography for the evalutation of carotid artery stenosis. Stroke. 1995;26:1577–81.

    Article  CAS  PubMed  Google Scholar 

  21. Puchner S, Popovic M, Wolf F, Reiter M, Lammer J, Bucek RA. Multidetector CTA in the quantification of internal carotid artery stenosis: value of different reformation techniques and axial source images compared with selective carotid arteriography. J Endovasc Ther. 2009;16:336–42.

    Article  PubMed  Google Scholar 

  22. Anzidei M, Napoli A, Zaccagna F, Di Paolo P, Saba L, Cavallo Marincola B, et al. Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients. Radiol Med. 2012;117:54–71.

    Article  CAS  PubMed  Google Scholar 

  23. Remonda L, Heid O, Schroth G. Carotid artery stenosis, occlusion, and pseudo-occlusion: first-pass, gadolinium-enhanced, three-dimensional MR angiography—preliminary study. Radiology. 1998;209:95–102.

    Article  CAS  PubMed  Google Scholar 

  24. Sundgren PC, Sundén P, Lindgren A, Lanke J, Holtås S, Larsson EM. Carotid artery stenosis: contrast-enhanced MR angiography with two different scan times compared with digital subtraction angiography. Neuroradiology. 2002;44:592–9.

    Article  CAS  PubMed  Google Scholar 

  25. Remonda L, Senn P, Barth A, Arnold M, Lövblad KO, Schroth G. Contrast-enhanced 3D MR angiography of the carotid artery: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol. 2002;23:213–9.

    PubMed  Google Scholar 

  26. Cosottini M, Pingitore A, Puglioli M, Michelassi MC, Lupi G, Abbruzzese A, et al. Contrast-enhanced three-dimensional magnetic resonance angiography of atherosclerotic internal carotid stenosis as the noninvasive imaging modality in revascularization decision making. Stroke. 2003;34:660–4.

    Article  PubMed  Google Scholar 

  27. Borisch I, Horn M, Butz B, Zorger N, Draganski B, Hoelscher T, et al. Preoperative evaluation of carotid artery stenosis: comparison of contrast-enhanced MRA and duplex sonography with digital subtraction angiography. AJNR Am J Neuroradiol. 2003;24:1117–22.

    PubMed  Google Scholar 

  28. Willinek WA, von Falkenhausen M, Born M, Gieseke J, Höller T, Klockgether T, et al. Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography: a prospective, intra-individual comparative analysis with digital subtraction angiography. Stroke. 2005;36:38–43.

    Article  PubMed  Google Scholar 

  29. Barth A, Arnold M, Mattle HP, Schroth G, Remonda L. Contrast-enhanced 3-D MRA in decision making for carotid endarterectomy: a 6-year experience. Cerebrovasc Dis. 2006;21:393–400.

    Article  PubMed  Google Scholar 

  30. Babiarz LS, Romero JM, Murphy EK, Brobeck B, Schaefer PW, González RG, et al. Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight MR angiography for determining ≥ 70 % internal carotid artery stenosis. AJNR Am J Neuroradiol. 2009;30:761–8.

    Article  CAS  PubMed  Google Scholar 

  31. Elgersma OE, Buijs PC, Wüst AF, van der Graaf Y, Eikelboom BC, Mali WP. Maximum internal carotid arterial stenosis: assessment with rotational angiography versus conventional intraarterial digital subtraction angiography. Radiology. 1999;213:777–83.

    Article  CAS  PubMed  Google Scholar 

  32. Anazalone N, Scomazzoni F, Catellano R, Strada L, Righi C, Politi LS, et al. Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology. 2005;236:204–13.

    Article  Google Scholar 

  33. Heiserman JE, Dean BL, Hodak JA, Flom RA, Bird CR, Drayer BP, et al. Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol. 1994;15:1401–7.

    CAS  PubMed  Google Scholar 

  34. Cloft HJ, Joseph GJ, Dion JE. Risk of DSA in patients with SAH, cerebral aneurysm, and AVM: a meta-analysis. Stroke. 1999;30:317–20.

    Article  CAS  PubMed  Google Scholar 

  35. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227:522–8.

    Article  PubMed  Google Scholar 

  36. Kaufmann TJ, Huston J 3rd, Mandrekar JN, Schleck CD, Thielen KR, Kallmes DF. Complications of diagnostic cerebral angiography: evaluation of 19,826 consecutive patients. Radiology. 2007,243(3):812–9.

    Article  PubMed  Google Scholar 

  37. Burger IM, Murphy KJ, Jordan LC, Tamargo RJ, Gailloud P. Safety of cerebral digital subtraction angiography in children: complication rate analysis in 241 consecutive diagnostic angiograms. Stroke. 2006;37:2535–9.

    Article  PubMed  Google Scholar 

  38. Maldonado TS. What are current preprocedure imaging requirements for carotid artery stenting and carotid endarterectomy: have magnetic resonance angiography and computed tomographic angiography made a difference? Semin Vasc Surg. 2007;20:205–15.

    Article  PubMed  Google Scholar 

  39. Connors JJ 3rd, Sacks D, Furlan AJ, Selman WR, Russell EJ, Stieg PE, et al. Training, competency, and credentialing standards for diagnostic cervicocerebral angiography, carotid stenting, and cerebrovascular intervention: a joint statement from the American Academy of Neurology, the American Association of Neurological Surgeons, the American Society of Interventional and Therapeutic Neuroradiology, the American Society of Neuroradiology, the Congress of Neurological Surgeons, the AANS/CNS Cerebrovascular Section, and the Society of Interventional Radiology. J Vasc Interv Radiol. 2004;15:1347–56.

    Article  PubMed  Google Scholar 

  40. Cloft HJ, Joseph GJ, Dion JE. Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke. 1999;30:317–20.

    Article  CAS  PubMed  Google Scholar 

  41. Feygelman VM, Huda W, Peters KR. Effective dose equivalents to patients undergoing cerebral angiography. AJNR Am J Neuroradiol. 1992;13:845–9.

    CAS  PubMed  Google Scholar 

  42. Gkanatsios NA, Huda W, Peters KR. Adult patient doses in interventional neuroradiology. Med Phys. 2002;29:717–23.

    Article  PubMed  Google Scholar 

  43. Topaltzikis T, Rountas C, Fezoulidis I, Kappas C, Theodorou K. In vivo dosimetry during DSA of the carotid and renal arteries. Derivation of local DRLs. Phys Med. 2009;25:166–71.

    Article  CAS  PubMed  Google Scholar 

  44. Fellner C, Lang W, Janka R, Wutke R, Bautz W, Fellner FA. Magnetic resonance angiography of the carotid arteries using three different techniques: accuracy compared with intraarterial x-ray angiography and endarterectomy specimens. J Magn Reson Imaging. 2005;21:424–31.

    Article  PubMed  Google Scholar 

  45. Chappell FM, Wardlaw JM, Young GR, Gillard JH, Roditi GH, Yip B, et al. Carotid artery stenosis: accuracy of noninvasive tests—individual patient data meta-analysis. Radiology. 2009;251:493–502.

    Article  PubMed  Google Scholar 

  46. DeMarco JK, Huston J 3rd, Nash AK. Extracranial carotid MR imaging at 3T. Magn Reson Imaging Clin N Am. 2006;14:109–21.

    Article  PubMed  Google Scholar 

  47. Anzalone N, Scomazzoni F, Castellano R, Strada L, Righi C, Politi LS, et al. Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MRA, contrast-enhanced MRA, conventional DSA, and rotational angiography for detection and grading. Radiology. 2005;236:204–13.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that there are no actual or potential conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Taschner MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, J., Veith, P., Jung, B. et al. MR Angiography at 3 Tesla to Assess Proximal Internal Carotid Artery Stenoses: Contrast-Enhanced or 3D Time-of-Flight MR Angiography?. Clin Neuroradiol 25, 41–48 (2015). https://doi.org/10.1007/s00062-013-0279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-013-0279-x

Keywords

Navigation