Skip to main content
Log in

Right ventricular failure in pulmonary hypertension: recent insights from experimental models

Rechtsherzversagen bei pulmonaler Hypertonie: aktuelle Erkenntnisse aus präklinischen Tiermodellen

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

An Erratum to this article was published on 09 May 2023

This article has been updated

Abstract

Right ventricular (RV) function is a critical determinant of the prognosis of patients with pulmonary hypertension (PH). Upon establishment of PH, RV dysfunction develops, leading to a gradual worsening of the condition over time, culminating in RV failure and premature mortality. Despite this understanding, the underlying mechanisms of RV failure remain obscure. As a result, there are currently no approved therapies specifically targeting the right ventricle. One contributing factor to the lack of RV-directed therapies is the complexity of the pathogenesis of RV failure as observed in animal models and clinical studies. In recent years, various research groups have begun utilizing multiple models, including both afterload-dependent and afterload-independent models, to investigate specific targets and pharmacological agents in RV failure. In this review, we examine various animal models of RV failure and the recent advancements made utilizing these models to study the mechanisms of RV failure and the potential efficacy of therapeutic interventions, with the ultimate goal of translating these findings into clinical practice to enhance the management of individuals with PH.

Zusammenfassung

Die Rechtsherzfunktion spielt eine entscheidende Rolle für die Symptomatik und Prognose von Patienten mit pulmonaler Hypertonie (PH). Im Laufe der Erkrankung führt eine progrediente Rechtsherzbelastung zu einer allmählichen Verschlechterung der rechtsventrikulären (RV-)Funktion, die im Rechtsherzversagen und im vorzeitigen Tod der Patienten gipfelt. Trotz dieses grundlegenden pathophysiologischen Verständnisses bleiben die ursächlichen Mechanismen des Rechtsherzversagens unklar. Daher gibt es derzeit keine zugelassenen Therapien für eine zielgerichtete Behandlung des rechten Ventrikels. Ein Faktor, der hierzu beiträgt, ist die Komplexität der Pathogenese des Rechtsherzversagens, die in tierexperimentellen und klinischen Studien beobachtet wurde. In den letzten Jahren haben daher verschiedene Forschungsgruppen begonnen, Tiermodelle zu verwenden, darunter sowohl nachlastabhängige als auch nachlastunabhängige Modelle, um spezifische therapeutisch angehbare Ziele und pharmakologische Wirkstoffe bei Rechtsherzversagen zu untersuchen. In der vorliegenden Übersichtsarbeit werden verschiedene Tiermodelle des Rechtsherzversagens und die aktuellen Fortschritte dargestellt, die unter Verwendung dieser Modelle erzielt wurden, um die Mechanismen des Rechtsherzversagens und die potenzielle Wirksamkeit therapeutischer Interventionen zu untersuchen. Das ultimative Ziel dabei ist es, diese Ergebnisse in die klinische Praxis zu übersetzen, um somit das Management und die Therapie von PH-Patienten zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Woods RH (1892) A few applications of a physical theorem to membranes in the human body in a state of tension. J Anat Physiol 26(3):362–370

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mirsky I (1969) Left ventricular stresses in the intact human heart. Biophys J 9(2):189–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanz J, Sanchez-Quintana D, Bossone E et al (2019) Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol 73(12):1463–1482

    Article  PubMed  Google Scholar 

  4. Todaro MC, Carerj S, Zito C et al (2020) Echocardiographic evaluation of right ventricular-arterial coupling in pulmonary hypertension. Am J Cardiovasc Dis 10(4):272–283

    PubMed  PubMed Central  Google Scholar 

  5. Rako ZA, Kremer N, Yogeswaran A et al (2023) Adaptive versus maladaptive right ventricular remodelling. ESC Heart Fail 10(2):762–775

    Article  PubMed  Google Scholar 

  6. Tello K, Gall H, Richter M et al (2019) Right ventricular function in pulmonary (arterial) hypertension. Herz 44(6):509–516

    Article  CAS  PubMed  Google Scholar 

  7. Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 43(38):3618–3731. https://doi.org/10.1093/eurheartj/ehac237

    Article  CAS  PubMed  Google Scholar 

  8. Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ (2022) Animal models of pulmonary hypertension:getting to the heart of the problem. Br J Pharmacol 179(5):811–837

    Article  CAS  PubMed  Google Scholar 

  9. Schultze AE, Wagner JG, White SM, Roth RA (1991) Early indications of monocrotaline pyrrole-induced lung injury in rats. Toxicol Appl Pharmacol 109(1):41–50

    Article  CAS  PubMed  Google Scholar 

  10. Gomez-Arroyo JG, Farkas L, Alhussaini AA et al (2012) The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol 302(4):L363–369

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg HC, Rabinovitch M (1988) Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Physiol 255(6):H1484–1491

    CAS  PubMed  Google Scholar 

  12. Urboniene D, Haber I, Fang YH et al (2010) Validation of high-resolution echocardiography and magnetic resonance imaging vs. high-fidelity catheterization in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 299(3):L401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruiter G, de Man FS, Schalij I et al (2013) Reversibility of the monocrotaline pulmonary hypertension rat model. Eur Respir J 42(2):553–556

    Article  CAS  PubMed  Google Scholar 

  14. West J, Hemnes A (2011) Experimental and transgenic models of pulmonary hypertension. Compr Physiol 1(2):769–782

    Article  PubMed  Google Scholar 

  15. Drexler ES, Bischoff JE, Slifka AJ et al (2008) Stiffening of the extrapulmonary arteries from rats in chronic hypoxic pulmonary hypertension. J Res Natl Inst Stand Technol 113(4):239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meyrick B, Reid L (1980) Hypoxia-induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am J Pathol 100(1):151–178

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Taraseviciene-Stewart L, Kasahara Y, Alger L et al (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15(2):427–438

    Article  CAS  PubMed  Google Scholar 

  18. Bogaard HJ, Natarajan R, Mizuno S et al (2010) Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 182(5):652–660

    Article  CAS  PubMed  Google Scholar 

  19. de Raaf MA, Schalij I, Gomez-Arroyo J et al (2014) SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction. Eur Respir J 44(1):160–168

    Article  PubMed  Google Scholar 

  20. Suen CM, Chaudhary KR, Deng Y et al (2019) Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure. Cardiovasc Res 115(4):788–799

    Article  CAS  PubMed  Google Scholar 

  21. Ciuclan L, Bonneau O, Hussey M et al (2011) A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 184(10):1171–1182

    Article  CAS  PubMed  Google Scholar 

  22. Mamazhakypov A, Weiss A, Zukunft S et al (2020) Effects of macitentan and tadalafil monotherapy or their combination on the right ventricle and plasma metabolites in pulmonary hypertensive rats. Pulm circ 10(4):2045894020947283

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sydykov A, Luitel H, Mamazhakypov A et al (2020) Genetic deficiency and pharmacological stabilization of mast cells ameliorate pressure overload-induced maladaptive right ventricular remodeling in mice. Int J Mol Sci 21(23):9099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mamazhakypov A, Sommer N, Assmus B et al (2021) Novel therapeutic targets for the treatment of right ventricular remodeling: insights from the pulmonary artery banding model. Int J Environ Res Public Health 18(16):8297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Müller M, Bischof C, Kapries T et al (2022) Right heart failure in mice upon pressure overload is promoted by mitochondrial oxidative stress. JACC Basic Transl Sci 7(7):658–677

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hemnes AR, Maynard KB, Champion HC et al (2012) Testosterone negatively regulates right ventricular load stress responses in mice. Pulm Circ 2(3):352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen S, Schultz JG, Holmboe S et al (2018) A pulmonary trunk banding model of pressure overload induced right ventricular hypertrophy and failure. J Vis Exp. https://doi.org/10.3791/58050

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sydykov A, Mamazhakypov A, Petrovic A et al (2018) Inflammatory mediators drive adverse right ventricular remodeling and dysfunction and serve as potential biomarkers. Front Physiol 9:609

    Article  PubMed  PubMed Central  Google Scholar 

  29. Egemnazarov B, Crnkovic S, Nagy BM et al (2018) Right ventricular fibrosis and dysfunction: actual concepts and common misconceptions. Matrix Biol 68–69:507–521

    Article  PubMed  Google Scholar 

  30. Lahm T, Douglas IS, Archer SL et al (2018) Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An official American thoracic society research statement. Am J Respir Crit Care Med 198(4):e15–e43

    Article  PubMed  PubMed Central  Google Scholar 

  31. Axelsen JB, Andersen S, Sun XQ et al (2019) Effects of 6‑mercaptopurine in pressure overload induced right heart failure. PLoS ONE 14(11):e225122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagendran J, Sutendra G, Paterson I et al (2013) Endothelin axis is upregulated in human and rat right ventricular hypertrophy. Circ Res 112(2):347–354

    Article  CAS  PubMed  Google Scholar 

  33. Bogaard HJ, Natarajan R, Henderson SC et al (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120(20):1951–1960

    Article  PubMed  Google Scholar 

  34. Akazawa Y, Okumura K, Ishii R et al (1985) Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension. J Appl Physiol 129(2):238–246

    Article  Google Scholar 

  35. Amsallem M, Sweatt AJ, Arthur Ataam J et al (2021) Targeted proteomics of right heart adaptation to pulmonary arterial hypertension. Eur Respir J 57(4):2002428. https://doi.org/10.1183/13993003.02428-2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Keranov S, Dorr O, Jafari L et al (2020) SPARCL1 as a biomarker of maladaptive right ventricular remodelling in pulmonary hypertension. Biomarkers 25(3):290–295

    Article  CAS  PubMed  Google Scholar 

  37. Piao L, Fang YH, Parikh K et al (2013) Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J Mol Med 91(10):1185–1197

    Article  CAS  PubMed  Google Scholar 

  38. Borgdorff MA, Koop AM, Bloks VW et al (2015) Clinical symptoms of right ventricular failure in experimental chronic pressure load are associated with progressive diastolic dysfunction. J Mol Cell Cardiol 79:244–253

    Article  CAS  PubMed  Google Scholar 

  39. Boehm M, Tian XM et al (2020) Delineating the molecular and histological events that govern right ventricular recovery using a novel mouse model of pulmonary artery de-banding. Cardiovasc Res 116(10):1700–1709

    Article  CAS  PubMed  Google Scholar 

  40. Schermuly RT, Kreisselmeier KP, Ghofrani HA et al (2004) Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 169(1):39–45

    Article  PubMed  Google Scholar 

  41. Lang M, Kojonazarov B, Tian X et al (2012) The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS One 7(8):e43433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boucherat O, Agrawal V, Lawrie A, Bonnet S (2022) The latest in animal models of pulmonary hypertension and right ventricular failure. Circ Res 130(9):1466–1486

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Support: This work was supported by the Excellence Cluster Cardio-Pulmonary System (ECCPS) and the Collaborative Research Center (SFB) 1213—Pulmonary Hypertension and Cor Pulmonale, grant number SFB1213/1, projects A08 and B08 (German Research Foundation, Bonn, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Weiß PhD.

Ethics declarations

Conflict of interest

A. Weiß, A. Mamazhakypov and R.T. Schermuly declare that they have no competing interests. A. Yogeswaran reports personal fees from MSD outside the submitted work.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

The original online version of this article was revised: Due to an editing error, the authors appeared in the wrong order, correct is: Athiththan Yogeswaran, Argen Mamazhakypov, Ralph T. Schermuly, Astrid Weiß

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogeswaran, A., Mamazhakypov, A., Schermuly, R.T. et al. Right ventricular failure in pulmonary hypertension: recent insights from experimental models. Herz 48, 285–290 (2023). https://doi.org/10.1007/s00059-023-05180-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-023-05180-8

Keywords

Schlüsselwörter

Navigation