Skip to main content
Log in

Darm-Herz-Achse

Wie Darmbakterien kardiovaskuläre Erkrankungen beeinflussen

Gut-heart axis

How gut bacteria influence cardiovascular diseases

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Betrachtung des Menschen als einen Holobionten, bestehend aus eukaryotischen Wirtszellen und assoziierten prokaryotischen Lebewesen, hat eine neue Perspektive auf die kardiovaskuläre Pathophysiologie eröffnet. Insbesondere die Bakterien des Darms beeinflussen die Zell- und Organfunktionen ihres Wirts. Darmbakterien stellen eine stoffwechselaktive Gemeinschaft dar, deren Zusammensetzung und Funktion kardiovaskuläre Erkrankungen beeinflussen kann. Die Interaktion zwischen Darmbakterien und Herz erfolgt über Metabolite bakteriellen Ursprungs, welche im Darm resorbiert und über die Zirkulation verteilt werden. Bakterielle Metabolite entstehen aus Nahrungsbestandteilen, was wiederum die Bedeutung der Ernährung unterstreicht. Manche dieser Metabolite, wie z. B. Trimethylamin-N-oxid (TMAO), können kardiovaskuläre Pathologien verstärken. Kurzkettige Fettsäuren wiederum werden als protektive Metabolite betrachtet. Das Immunsystem des Wirts ist dabei ein wichtiger Angriffspunkt für diese Metabolite und erklärt einen großen Teil ihrer Wirkungen. In der Zukunft könnte die gezielte Beeinflussung der Darmbakterien helfen, die Entstehung und Progression von kardiovaskulären Erkrankungen zu verhindern.

Abstract

The view of humans as holobionts consisting of eukaryotic host cells and associated prokaryotic organisms, has opened up a new perspective on cardiovascular pathophysiology. In particular, intestinal bacteria influence the cell and organ functions of the host. Intestinal bacteria represent a metabolically active community whose composition and function can influence cardiovascular health and disease. The interaction between the intestinal microbiota and the heart occurs via metabolites of bacterial origin, which are resorbed in the intestine and distributed via the circulation. Bacterial metabolites are produced from food components, which in turn emphasizes the importance of nutrition. Some of these metabolites, such as trimethylamine N‑oxide (TMAO), can exacerbate cardiovascular pathologies. Short-chain fatty acids (SCFA) in turn are considered to be protective metabolites. The host’s immune system is an important target for these metabolites and explains much of their effects. In the future, the targeted manipulation of intestinal bacteria could help to prevent the development and progression of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Morgan XC, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8:e1002808. https://doi.org/10.1371/journal.pcbi.1002808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tierney BT et al (2019) The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26:283–295.e8. https://doi.org/10.1016/j.chom.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nishida A et al (2018) Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 11:1–10. https://doi.org/10.1007/s12328-017-0813-5

    Article  PubMed  Google Scholar 

  5. Castellarin M et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306. https://doi.org/10.1101/gr.126516.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  7. Karlsson FH et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103. https://doi.org/10.1038/nature12198

    Article  CAS  PubMed  Google Scholar 

  8. Qin J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60. https://doi.org/10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  9. Vaziri ND et al (2013) Chronic kidney disease alters intestinal microbial flora. Kidney Int 83:308–315. https://doi.org/10.1038/ki.2012.345

    Article  PubMed  Google Scholar 

  10. Yang T et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315

    Article  CAS  PubMed  Google Scholar 

  11. Karlsson FH et al (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245. https://doi.org/10.1038/ncomms2266

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Q et al (2018) Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics 50:893–903. https://doi.org/10.1152/physiolgenomics.00070.2018

    Article  CAS  PubMed  Google Scholar 

  13. Cui X et al (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635. https://doi.org/10.1038/s41598-017-18756-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forslund K et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266. https://doi.org/10.1038/nature15766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rothschild D et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215. https://doi.org/10.1038/nature25973

    Article  CAS  PubMed  Google Scholar 

  16. Zhernakova A et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569. https://doi.org/10.1126/science.aad3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williams B et al (2018) 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 39:3021–3104. https://doi.org/10.1093/eurheartj/ehy339

    Article  PubMed  Google Scholar 

  18. Knuuti J et al (2019) ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  19. Ridker PM et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  20. Sandek A et al (2012) Studies on bacterial endotoxin and intestinal absorption function in patientswith chronic heart failure. Int J Cardiol 157:80–85. https://doi.org/10.1016/j.ijcard.2010.12.016

    Article  PubMed  Google Scholar 

  21. Kim S et al (2018) Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci 132:701–718. https://doi.org/10.1042/CS20180087

    Article  CAS  Google Scholar 

  22. Thaiss CA et al (2018) Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359:1376–1383. https://doi.org/10.1126/science.aar3318

    Article  CAS  PubMed  Google Scholar 

  23. Vaziri ND et al (2012) Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant 27:2686–2693. https://doi.org/10.1093/ndt/gfr624

    Article  CAS  PubMed  Google Scholar 

  24. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305. https://doi.org/10.1056/NEJMoa041031

    Article  CAS  PubMed  Google Scholar 

  25. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393. https://doi.org/10.1016/j.cardiores.2006.09.011

    Article  CAS  PubMed  Google Scholar 

  26. Sabico S et al (2019) Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38:1561–1569. https://doi.org/10.1016/j.clnu.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  27. Wang IK et al (2015) The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Beneficial Microbes 6:423–430. https://doi.org/10.3920/BM2014.0088

    Article  PubMed  Google Scholar 

  28. Collaborators GBDD (2019) Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393:1958–1972. https://doi.org/10.1016/S0140-6736(19)30041-8

    Article  Google Scholar 

  29. Miranda PM et al (2018) High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome 6:57. https://doi.org/10.1186/s40168-018-0433-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang C et al (2017) High-salt diet has a certain impact on protein digestion and gut Microbiota: a sequencing and Proteome combined study. Front Microbiol 1838:8. https://doi.org/10.3389/fmicb.2017.01838

    Article  Google Scholar 

  31. Wilck N et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589. https://doi.org/10.1038/nature24628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen H et al (2013) Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res 97:696–704. https://doi.org/10.1093/cvr/cvs422

    Article  CAS  PubMed  Google Scholar 

  33. Norlander AE et al (2016) Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68:167–174. https://doi.org/10.1161/HYPERTENSIONAHA.116.07493

    Article  CAS  PubMed  Google Scholar 

  34. Gutierrez-Vazquez C, Quintana FJ (2018) Regulation of the immune response by the arylhydrocarbon receptor. Immunity 48:19–33. https://doi.org/10.1016/j.immuni.2017.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zelante T et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385. https://doi.org/10.1016/j.immuni.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  36. Hung SC, Kuo KL, Wu CC, Tarng DC (2017) Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. JAHA. https://doi.org/10.1161/JAHA.116.005022

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nakano T et al (2019) Uremic toxin indoxyl sulfate promotes proinflammatory macrophage activation via the interplay of OATP2B1 and Dll4-notch signaling. Circulation 139:78–96. https://doi.org/10.1161/CIRCULATIONAHA.118.034588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Devlin AS et al (2016) Modulation of a circulating uremic solute via rational genetic manipulation of the Gut microbiota. Cell Host Microbe 20:709–715. https://doi.org/10.1016/j.chom.2016.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pietinen P et al (1996) Intake of dietary fiber and risk of coronary heart disease in a cohort of Finnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Circulation 94:2720–2727. https://doi.org/10.1161/01.cir.94.11.2720

    Article  CAS  PubMed  Google Scholar 

  40. McLoughlin RF, Berthon BS, Jensen ME, Baines KJ, Wood LG (2017) Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: a systematic review and meta-analysis. Am J Clin Nutr 106:930–945. https://doi.org/10.3945/ajcn.117.156265

    Article  CAS  PubMed  Google Scholar 

  41. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684. https://doi.org/10.1038/ni.2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pluznick JL et al (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415. https://doi.org/10.1073/pnas.1215927110

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nicholson JK et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. https://doi.org/10.1126/science.1223813

    Article  CAS  PubMed  Google Scholar 

  46. Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C (1991) Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr 121:869–878. https://doi.org/10.1093/jn/121.6.869

    Article  CAS  PubMed  Google Scholar 

  47. Wang HB, Wang PY, Wang X, Wan YL, Liu YC (2012) Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin‑1 transcription. Dig Dis Sci 57:3126–3135. https://doi.org/10.1007/s10620-012-2259-4

    Article  CAS  PubMed  Google Scholar 

  48. Natarajan N et al (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiological Genomics 48:826–834. https://doi.org/10.1152/physiolgenomics.00089.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bartolomaeus H et al (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139:1407–1421. https://doi.org/10.1161/CIRCULATIONAHA.118.036652

    Article  CAS  PubMed  Google Scholar 

  50. Marques FZ et al (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977. https://doi.org/10.1161/CIRCULATIONAHA.116.024545

    Article  CAS  PubMed  Google Scholar 

  51. Arpaia N et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T‑cell generation. Nature. https://doi.org/10.1038/nature12726

    Article  PubMed  PubMed Central  Google Scholar 

  52. Furusawa Y et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. https://doi.org/10.1038/nature12721

    Article  PubMed  Google Scholar 

  53. Kasahara K et al (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461–1471. https://doi.org/10.1038/s41564-018-0272-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A (2016) Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in apoe−/− mice. Circulation 133:2434–2446. https://doi.org/10.1161/CIRCULATIONAHA.115.019645

    Article  CAS  PubMed  Google Scholar 

  55. Rault-Nania MH et al (2006) Inulin attenuates atherosclerosis in apolipoprotein E‑deficient mice. Br J Nutr 96:840–844. https://doi.org/10.1017/bjn20061913

    Article  CAS  PubMed  Google Scholar 

  56. Brandsma E et al (2019) A Proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ Res 124:94–100. https://doi.org/10.1161/CIRCRESAHA.118.313234

    Article  CAS  PubMed  Google Scholar 

  57. Guasch-Ferre M et al (2019) meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 139:1828–1845. https://doi.org/10.1161/CIRCULATIONAHA.118.035225

    Article  PubMed  Google Scholar 

  58. Tang WHW, Li DY, Hazen SL (2019) Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol 16:137–154. https://doi.org/10.1038/s41569-018-0108-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Z et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. https://doi.org/10.1038/nature09922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koeth RA et al (2013) Intestinal microbiota metabolism of l‑carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. https://doi.org/10.1038/nm.3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Al-Waiz M, Mitchell SC, Idle JR, Smith RL (1987) The metabolism of 14C-labelled trimethylamine and its N‑oxide in man. Xenobiotica 17:551–558. https://doi.org/10.3109/00498258709043962

    Article  CAS  PubMed  Google Scholar 

  62. Hai X et al (2015) Mechanism of Prominent Trimethylamine Oxide (TMAO) Accumulation in Hemodialysis Patients. PLoS ONE 10:e143731. https://doi.org/10.1371/journal.pone.0143731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang WH et al (2015) Gut microbiota-dependent trimethylamine N‑oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116:448–455. https://doi.org/10.1161/CIRCRESAHA.116.305360

    Article  CAS  PubMed  Google Scholar 

  64. Mente A et al (2015) The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol 31:1189–1194. https://doi.org/10.1016/j.cjca .2015.06.016

    Article  PubMed  Google Scholar 

  65. Tang WH et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. https://doi.org/10.1056/NEJMoa1109400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang WH et al (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914. https://doi.org/10.1016/j.jacc.2014.02.617

    Article  CAS  PubMed  Google Scholar 

  67. Gruppen EG et al (2017) TMAO is Associated with Mortality: Impact of Modestly Impaired Renal Function. Sci Rep 7:13781. https://doi.org/10.1038/s41598-017-13739-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meyer KA et al (2016) Microbiota-dependent metabolite trimethylamine N‑oxide and coronary artery calcium in the coronary artery risk development in young adults study (CARDIA). JAHA. https://doi.org/10.1161/JAHA.116.003970

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yin J et al (2015) Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. JAHA. https://doi.org/10.1161/JAHA.115.002699

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mueller DM et al (2015) Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243:638–644. https://doi.org/10.1016/j.atherosclerosis.2015.10.091

    Article  CAS  PubMed  Google Scholar 

  71. McEntyre CJ et al (2015) Variation of betaine, N,N-dimethylglycine, choline, glycerophosphorylcholine, taurine and trimethylamine-N-oxide in the plasma and urine of overweight people with type 2 diabetes over a two-year period. Ann Clin Biochem 52:352–360. https://doi.org/10.1177/0004563214545346

    Article  CAS  PubMed  Google Scholar 

  72. Kuhn T et al (2017) Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin Chem Lab Med 55:261–268. https://doi.org/10.1515/cclm-2016-0374

    Article  CAS  PubMed  Google Scholar 

  73. Seldin MM et al (2016) Trimethylamine N‑oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. JAHA. https://doi.org/10.1161/JAHA.115.002767

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhu W, Wang Z, Tang WHW, Hazen SL (2017) Gut microbe-generated trimethylamine N‑oxide from dietary choline is prothrombotic in subjects. Circulation 135:1671–1673. https://doi.org/10.1161/CIRCULATIONAHA.116.025338

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen S et al (2019) Trimethylamine N‑oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 30:1141–1151.e5. https://doi.org/10.1016/j.cmet.2019.08.021

    Article  CAS  PubMed  Google Scholar 

  76. Craciun S, Balskus EP (2012) Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 109:21307–21312. https://doi.org/10.1073/pnas.1215689109

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martinez-del Campo A et al (2015) Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio. https://doi.org/10.1128/mBio.00042-15

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang Z et al (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Roberts AB et al (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407–1417. https://doi.org/10.1038/s41591-018-0128-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Maier L et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. https://doi.org/10.1038/nature25979

    Article  PubMed  PubMed Central  Google Scholar 

  81. Imhann F et al (2016) Proton pump inhibitors affect the gut microbiome. Gut 65:740–748. https://doi.org/10.1136/gutjnl-2015-310376

    Article  CAS  PubMed  Google Scholar 

  82. Wu H et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858. https://doi.org/10.1038/nm.4345

    Article  CAS  PubMed  Google Scholar 

  83. Pryor R et al (2019) Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 178:1299–1312.e29. https://doi.org/10.1016/j.cell.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haiser HJ et al (2013) Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341:295–298. https://doi.org/10.1126/science.1235872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Skelly AN, Sato Y, Kearney S, Honda K (2019) Mining the microbiota for microbial and metabolite-based immunotherapies. Nat Rev Immunol 19:305–323. https://doi.org/10.1038/s41577-019-0144-5

    Article  CAS  PubMed  Google Scholar 

  86. Rosshart SP et al (2019) Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. https://doi.org/10.1126/science.aaw4361

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rosshart SP et al (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13. https://doi.org/10.1016/j.cell.2017.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Turnbaugh PJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14. https://doi.org/10.1126/scitranslmed.3000322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Förderung

Dr. Nicola Wilck ist Teilnehmer des Clinician Scientist Programms des Berlin Institute of Health (BIH). Seine Nachwuchsgruppe wird durch die Corona-Stiftung im Deutschen Stifterverband gefördert. Er wird durch einen Starting Grant (852796) des European Research Council und im Rahmen des Sonderforschungsbereichs 1365 durch die Deutsche Forschungsgemeinschaft unterstützt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Wilck.

Ethics declarations

Interessenkonflikt

H. Bartolomaeus, V. McParland und N. Wilck geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolomaeus, H., McParland, V. & Wilck, N. Darm-Herz-Achse. Herz 45, 134–141 (2020). https://doi.org/10.1007/s00059-020-04897-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-020-04897-0

Schlüsselwörter

Keywords

Navigation