Skip to main content
Log in

The predictive value of the epicardial adipose thickness in the rate of expansion of the aortic root

Dicke des epikardialen Fettgewebes als Prädiktor für die Ausdehnung der Aortenwurzel

  • Original articles
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Epicardial adipose tissue (ECAT) is metabolically active and is involved in the development of atherosclerosis. The thickness of ECAT has been positively correlated with the dimensions of the ascending aorta. We aimed to examine whether ECAT thickness predicted the expansion of the aortic dimensions.

Methods

The imaging results of patients who had undergone transthoracic echocardiographic (TTE) examinations more than twice during the period 2005–2015 were surveyed. We included adult patients who had undergone TTE examinations at least 1 year apart. The ECAT was measured in the parasternal long-axis view from the index TTE study. End-diastolic dimensions in three consecutive beats were averaged for all measurements. The annulus, root, and sinotubular junction (STJ) were also measured. The amount of increase (if any) in aortic dimensions per year was calculated and the correlation of this increase with the initial thickness of the ECAT was analyzed.

Results

In total, 429 examinations were performed with 197 patients (17 females), from which 394 examinations were analyzed. The ECAT thickness was 8.6 ± 3.6 mm. In the initial examinations, the annulus, STJ, and root measured 23 ± 4, 28 ± 4, and 34 ± 4 mm, respectively. In univariate analysis, for every 1 mm of ECAT thickness, the STJ expanded 0.056 (95% CI: 0.001–0.112 mm/year; p = 0.030) and the aortic root expanded 0.088 mm/year (p < 0.001). In multivariate analysis, ECAT thickness remained an independent predictor of the aortic root expansion. For every 1‑mm increase in ECAT thickness, the aortic root expanded by 0.036 mm (95% CI: 0.010–0.062) per year (p = 0.007).

Conclusion

The thickness of the ECAT is a predictor of more rapid increases in the dimensions of the aortic root. Further studies of patients with established aortic aneurysm are warranted.

Zusammenfassung

Hintergrund

Epikardiales Fettgewebe („epicardial adipose tissue“ [ECAT]) ist metabolisch aktiv und an der Entwicklung der Atherosklerose beteiligt. Die Dicke des ECAT korreliert positiv mit den Abmessungen der Aorta ascendens. In der vorliegenden Arbeit wurde untersucht, ob die ECAT-Dicke ein Prädiktor für die aortalen Abmessungen ist.

Methoden

Betrachtet wurden die Ergebnisse der Bildgebung von Patienten, die im Zeitraum 2005–2015 mehr als 2‑mal einer transthorakalen Echokardiographie (TTE) unterzogen worden waren. Eingeschlossen wurden erwachsene Patienten, bei denen mindestens ein Jahr zwischen den TTE-Untersuchungen lag. Das ECAT wurde in Aufnahmen der parasternalen Langachse aus der TTE-Ausgangsuntersuchung vermessen. Für alle Messungen wurden die enddiastolischen Abmessungen bei 3 aufeinanderfolgenden Schlägen gemittelt. Ebenfalls vermessen wurden der Anulus, die Aortenwurzel und der sinutubuläre Übergang. Die Zunahme (soweit gegeben) in den Abmessungen der Aorta pro Jahr wurde berechnet und die Korrelation dieser Zunahme mit der ECAT-Dicke in der Ausgangsmessung analysiert.

Ergebnisse

Insgesamt wurden 429 Untersuchungen bei 197 Patienten (17 weiblich) durchgeführt, 394 dieser Untersuchungen wurden analysiert. Die ECAT-Dicke betrug 8,6 ± 3,6 mm. In den Ausgangsmessungen maßen der Anulus, der sinutubuläre Übergang und die Aortenwurzel 23 ± 4, 28 ± 4 bzw. 34 ± 4 mm. In der univariaten Analyse nahm der sinutubuläre Übergang mit jedem Millimeter der ECAT-Dicke um 0,056 mm/Jahr (95%-Konfidenzintervall [KI]: 0,001–0,112 mm/Jahr; p = 0,030) und die Aortenwurzel um 0,088 mm/Jahr zu (p < 0,001). In der multivariaten Analyse blieb die ECAT-Dicke ein unabhängiger Prädiktor für die Ausdehnung der Aortenwurzel. Mit jeder Zunahme der ECAT-Dicke um 1 mm vergrößerte sich die Aortenwurzel um 0,036 mm/Jahr (95%-KI: 0,010–0,062 mm/Jahr; p = 0,007).

Schlussfolgerung

Die ECAT-Dicke ist ein Prädiktor für die schnellere Zunahme der Abmessungen der Aortenwurzel. Es sollten Studien an Patienten mit gesichertem Aortenaneurysma durchgeführt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboukhoudir F, Rekik S, Pansieri M et al (2018) Adipose epicardial tissue association with subclinical systolic dysfunction detected by longitudinal strain in diabetic patients with poor glycemic control. Ann Cardiol Angeiol (Paris) 67(5):310–314. https://doi.org/10.1016/j.ancard.2018.08.003

    Article  CAS  Google Scholar 

  2. Acele A, Baykan AO, Yüksel Kalkan G et al (2017) Epicardial fat thickness is associated with aortic intima-media thickness in patients without clinical manifestation of atherosclerotic cardiovascular disease. Echocardiography 34(8):1146–1151

    Article  Google Scholar 

  3. Alnabelsi TS, Alhamshari Y, Mulki RH et al (2016) Relation between epicardial adipose and aortic valve and mitral annular calcium determined by computed tomography in subjects aged ≥ 65 years. Am J Cardiol 118:1088–1093

    Article  Google Scholar 

  4. Ansaldo AM, Montecucco F, Sahebkar A et al (2019) Epicardial adipose tissue and cardiovascular diseases. Int J Cardiol 278:254–260. https://doi.org/10.1016/j.ijcard.2018.09.089

    Article  Google Scholar 

  5. Canga A, Kocaman SA, Cetin M et al (2012) Increased epicardial adipose tissue thickness is correlated with ascending aortic diameter. Tohoku J Exp Med 226:183–190

    Article  CAS  Google Scholar 

  6. Cetin M, Kocaman SA, Durakoglugil ME et al (2012) Independent determinants of ascending aortic dilatation in hypertensive patients: smoking, endothelial dysfunction, and increased epicardial adipose tissue. Blood Press Monit 17:223–230

    Article  Google Scholar 

  7. Eroglu S (2015) How do we measure epicardial adipose tissue thickness by transthoracic echocardiography? Anatol J Cardiol 15:416–419

    Article  CAS  Google Scholar 

  8. Eroglu S, Sade LE, Yildirir A et al (2009) Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 19:211–217

    Article  CAS  Google Scholar 

  9. Hachiya K, Fukuta H, Wakami K et al (2014) Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease. Int J Cardiovasc Imaging 308(7):1393–1398

    Article  Google Scholar 

  10. Homsi R, Thomas D, Gieseke J et al (2016) Epicardial fat volume and aortic stiffness in healthy individuals: a quantitative cardiac magnetic resonance study. Rofo 188(9):853–858. https://doi.org/10.1055/s-0042-110098

    Article  CAS  PubMed  Google Scholar 

  11. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22:450–457

    Article  CAS  Google Scholar 

  12. Kim BJ, Kim BS, Kang JH (2013) Echocardiographic epicardial fat thickness is associated with arterial stiffness. Int J Cardiol 167:2234–2238

    Article  Google Scholar 

  13. Lavall D, Schäfers HJ, Böhm M et al (2012) Aneurysms of the ascending aorta. Dtsch Arztebl Int 109:227–233

    PubMed  PubMed Central  Google Scholar 

  14. Luna-Luna M, Cruz-Robles D, Avila-Vanzzini N et al (2017) Differential expression of osteopontin, and osteoprotegerin mRNA in epicardial adipose tissue between patients with severe coronary artery disease and aortic valvular stenosis: association with HDL subclasses. Lipids Health Dis 16:156

    Article  Google Scholar 

  15. Maeda M, Oba K, Yamaguchi S et al (2018) Usefulness of epicardial adipose tissue volume to predict recurrent atrial fibrillation after radiofrequency catheter ablation. Am J Cardiol 122:1694–1700

    Article  Google Scholar 

  16. Mahabadi AA, Berg MH, Lehmann N et al (2013) Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 61:1388–1395

    Article  Google Scholar 

  17. Mahabadi AA, Kahlert HA, Dykun I et al (2017) Epicardial adipose tissue thickness independently predicts severe aortic valve stenosis. J Heart Valve Dis 26:262–267

    PubMed  Google Scholar 

  18. Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  Google Scholar 

  19. Park HE, Choi SY, Kim HS et al (2012) Epicardial fat reflects arterial stiffness: assessment using 256-slice multidetector coronary computed tomography and cardio-ankle vascular index. J Atheroscler Thromb 19:570–576

    Article  Google Scholar 

  20. Patel HJ, Deeb GM (2008) Ascending and arch aorta: pathology, natural history, and treatment. Circulation 118:188–195

    Article  Google Scholar 

  21. Prakaschandra RD, Naidoo DP (2018) The association of epicardial adipose tissue and the metabolic syndrome in community participants in South Africa. J Cardiovasc Echogr 28:160–165

    Article  Google Scholar 

  22. Psychari SN, Tsoukalas D, Varvarousis D et al (2018) Opposite relations of epicardial adipose tissue to left atrial size in paroxysmal and permanent atrial fibrillation. SAGE Open Med. https://doi.org/10.1177/2050312118799908

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rabkin SW (2007) Epicardial fat: properties, function and relationship to obesity. Obes Rev 8:253–261

    Article  CAS  Google Scholar 

  24. Sade LE, Eroglu S, Bozbas H et al (2009) Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis 204:580–585

    Article  CAS  Google Scholar 

  25. Toufan M, Pourafkari L, Boudagh S et al (2016) Epiaortic fat pad area: a novel index for the dimensions of the ascending aorta. Vasc Med 21:191–198

    Article  Google Scholar 

  26. Tsutsumi K, Hashizume K, Inoue Y (2016) Natural history of the ascending aorta after aortic valve replacement: risk factor analysis for late aortic complications after aortic valve replacement. Gen Thorac Cardiovasc Surg 64:243–250

    Article  Google Scholar 

  27. Vasan RS, Larson MG, Levy D (1995) Determinants of echocardiographic aortic root size. The Framingham Heart Study. Circulation 91:734–740

    Article  CAS  Google Scholar 

  28. Wang J, Chen D, Cheng XM et al (2015) Influence of phenotype conversion of epicardial adipocytes on the coronary atherosclerosis and its potential molecular mechanism. Am J Transl Res 7:1712–1723

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamashita K, Yamamoto MH, Igawa W et al (2018) Association of epicardial adipose tissue volume and total coronary plaque burden in patients with coronary artery disease. Int Heart J 59(6):1219–1226. https://doi.org/10.1536/ihj.17-709

    Article  CAS  PubMed  Google Scholar 

  30. Yorgun H, Canpolat U, Hazirolan T et al (2012) Epicardial adipose tissue thickness predicts descending thoracic aorta atherosclerosis shown by multidetector computed tomography. Int J Cardiovasc Imaging 28:911–919

    Article  Google Scholar 

  31. Yuce G, Turkvatan A, Yener O (2015) Can aortic atherosclerosis or epicardial adipose tissue volume be used as a marker for predicting coronary artery disease? J Cardiol 65:143–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader D. Nader MD, PhD.

Ethics declarations

Conflict of interest

N.D. Nader, L. Pourafkari, A.O. Hassani-Afshar, M. Umholtz, A. Sadeghpour, A. Tajlil, and C.M. Li declare that they have no competing interests.

This was a retrospective study conducted at the VA Western New York Medical Center. The institutional ethics committee reviewed and approved the study protocol and the study was exempted from informed consent because of its retrospective design. The study was conducted in accordance to the ethical standards of the Helsinki Declaration of 1975 and patient privacy was maintained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourafkari, L., Hassani-Afshar, A., Umholtz, M. et al. The predictive value of the epicardial adipose thickness in the rate of expansion of the aortic root. Herz 46 (Suppl 1), 48–53 (2021). https://doi.org/10.1007/s00059-019-04865-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-019-04865-3

Keywords

Schlüsselwörter

Navigation