Skip to main content
Log in

Nichtkodierende RNA

Innovative Regulatoren mit therapeutischer Perspektive

Non-coding RNA

Innovative regulators with therapeutic perspective

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Infolge des humanen Genomprojekts wurde bekannt, dass lediglich 1–3 % der Gentranskripte tatsächlich Proteine kodieren und der wesentlich größere Anteil als nichtkodierende Ribonukleinsäuren (ncRNAs) vorliegt. Diese ncRNAs nehmen großen Einfluss auf verschiedenste physiologische und pathologische Mechanismen eines Organismus. Vor allem microRNAs (miRNAs) und lange nichtkodierende RNAs (lncRNAs), welche anhand ihrer Größe und Funktion unterschieden werden, sind in die Entstehung und Regulation vieler Krankheiten involviert. Auch im Hinblick auf Herz- und kardiovaskuläre Erkrankungen wurden bereits zahlreiche ncRNAs näher beschrieben. Da diese therapeutische Zielstrukturen darstellen, bieten sie eine ganz neue Ebene zur Entdeckung vielversprechender therapeutischer Ansätze. Es gibt bereits verschiedene Ansätze, die Expressionslevel bestimmter ncRNAs zu verändern, um pathologische Prozesse positiv zu beeinflussen und erste Medikamente, basierend auf miRNAs, sind bereits zugelassen. Darüber hinaus können Plasma-ncRNAs als neue nicht-invasive diagnostische Marker zur Erkennung von Krankheiten dienen.

Abstract

As a result of the Human Genome Project it became evident that only 1–3% of all gene transcripts encode proteins. The vast majority of gene transcripts are in fact characterized as non-coding RNAs (ncRNAs). These ncRNAs have a huge impact on diverse physiological and pathological mechanisms within an organism. In particular, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which are differentiated by their size and function, are involved in the regulation and development of many illnesses. In the context of heart and cardiovascular diseases numerous ncRNAs have also already been described in some detail. As these molecules represent therapeutic target structures, ncRNAs provide a completely new level for the discovery of promising therapeutic approaches. Many approaches have already been developed aimed at influencing the expression levels of specific ncRNAs in order to induce beneficial effects on pathological processes. In fact, first medications based on miRNAs have already achieved approval. Additionally, ncRNAs contained in plasma can serve as new non-invasive diagnostic markers for the detection of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Djebali S et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beermann J, Piccoli M‑T, Viereck J, Thum T (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96:1297–1325

    Article  PubMed  Google Scholar 

  4. Thum T, Condorelli G (2015) Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116:751–762

    Article  CAS  PubMed  Google Scholar 

  5. Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865

    Article  CAS  PubMed  Google Scholar 

  6. Bassett AR et al (2014) Considerations when investigating lncRNA function in vivo. Elife 3:e03058. https://doi.org/10.7554/eLife.03058

    PubMed  PubMed Central  Google Scholar 

  7. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLOS ONE 7:e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J 7:155–160

    Article  CAS  PubMed  Google Scholar 

  9. Hansen TB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. Embo J 30:4414–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  PubMed  Google Scholar 

  11. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  PubMed  Google Scholar 

  13. Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guttman M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viereck J, Bang C, Foinquinos A, Thum T (2014) Regulatory RNAs and paracrine networks in the heart. Cardiovasc Res 102:290–301

    Article  CAS  PubMed  Google Scholar 

  20. Devaux Y et al (2015) Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol 12:415–425

    Article  CAS  PubMed  Google Scholar 

  21. Greco CM, Condorelli G (2015) Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 12:488–497

    Article  CAS  PubMed  Google Scholar 

  22. Tano K, Akimitsu N (2012) Long non-coding RNAs in cancer progression. Front Genet 3:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orly Wapinski HYC (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  PubMed  Google Scholar 

  24. Klattenhoff CA et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jia H et al (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pauli A et al (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22:577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pandey RR et al (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32:232–246

    Article  CAS  PubMed  Google Scholar 

  30. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  31. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    Article  CAS  PubMed  Google Scholar 

  32. Podlevsky JD, Chen JJ-L (2012) It all comes together at the ends: telomerase structure, function, and biogenesis. Mutat Res 730:3–11

    Article  CAS  PubMed  Google Scholar 

  33. Thum T (2014) Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 11:655–663

    Article  CAS  PubMed  Google Scholar 

  34. Thum T et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Y, Zhang X, Klibanski A (2012) MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol 48:R45–R53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piccoli M‑T et al (2017) Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121(5):575–583. https://doi.org/10.1161/CIRCRESAHA.117.310624

    Article  CAS  PubMed  Google Scholar 

  37. Han P et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liew C‑C, Dzau VJ (2004) Molecular genetics and genomics of heart failure. Nat Rev Genet 5:811–825

    Article  CAS  PubMed  Google Scholar 

  39. Knabel MK et al (2015) Systemic delivery of scAAV8-encoded MiR-29a ameliorates hepatic fibrosis in carbon tetrachloride-treated mice. PLOS ONE 10:e124411

    Article  PubMed  PubMed Central  Google Scholar 

  40. Quattrocelli M et al (2013) Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice. J Am Heart Assoc 2:e284

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31:577–577

    Article  CAS  PubMed  Google Scholar 

  42. Thum T (2012) MicroRNA therapeutics in cardiovascular medicine. Embo Mol Med 4:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Janssen HLA et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694

    Article  CAS  PubMed  Google Scholar 

  44. Meng L et al (2015) Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:409–412

    Article  CAS  PubMed  Google Scholar 

  45. Viereck J et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8:326ra22–326ra22

    Article  PubMed  Google Scholar 

  46. Bär C, Chatterjee S, Thum T (2016) Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation 134:1484–1499

    Article  PubMed  Google Scholar 

  47. Liu X, Fan Z, Zhao T, Cao W, Zhang L, Li H, Xie Q, Tian Y, Wang B (2015) Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: an independent study of Han population. Exp Gerontol 72:230–238

    Article  CAS  PubMed  Google Scholar 

  48. Fichtlscherer S et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  CAS  PubMed  Google Scholar 

  49. Tijsen AJ et al (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039

    Article  CAS  PubMed  Google Scholar 

  50. Schulte C, Zeller T (2015) microRNA-based diagnostics and therapy in cardiovascular disease-summing up the facts. Cardiovasc Diagn Ther 5:17–36

    PubMed  PubMed Central  Google Scholar 

  51. Derda AA et al (2015) Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int J Cardiol 196:115–122

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kumarswamy R et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575

    Article  CAS  PubMed  Google Scholar 

  53. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115:668–677

    Article  CAS  PubMed  Google Scholar 

  54. Reis EM, Verjovski-Almeida S (2012) Perspectives of long non-coding RNAs in cancer diagnostics. Front Genet 3:32

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lorenzen JM, Thum T (2012) Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol 7:1528–1533

    Article  CAS  PubMed  Google Scholar 

  56. Lorenzen JM et al (2011) Urinary miR-210 as a mediator of acute T‑cell mediated rejection in renal allograft recipients. Am J Transplant 11:2221–2227

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Förderung

Wir bedanken uns für die finanzielle Unterstützung unserer Arbeiten bei der Deutschen Forschungsgemeinschaft, dem European Research Council und dem REBIRTH-Excellence Cluster der Medizinischen Hochschule Hannover.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Bär or T. Thum MD, PhD.

Ethics declarations

Interessenkonflikt

T. Thum ist Gründer von Cardior Pharmaceuticals und hat mehrere Patente zu nichtkodierender RNAs eingereicht bzw. lizensiert. A. Bührke und C. Bär geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bührke, A., Bär, C. & Thum, T. Nichtkodierende RNA. Herz 43, 115–122 (2018). https://doi.org/10.1007/s00059-017-4660-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4660-4

Schlüsselwörter

Keywords

Navigation